輔仁大學
學術資源網

記錄編號3249
狀態NC088FJU00198003
助教查核
索書號
學校名稱輔仁大學
系所名稱物理學系
舊系所名稱
學號486326262
研究生(中)陳珮欣
研究生(英)PeiHsin Chen
論文名稱(中)多光束相位型光柵設計之研究
論文名稱(英)Design and Research of a Multi-Beam Phase-Only Grating Element
其他題名
指導教授(中)劉宗平
指導教授(英)Mark O. Freeman
校內全文開放日期
校外全文開放日期
全文不開放理由
電子全文送交國圖.
國圖全文開放日期.
檔案說明
電子全文
學位類別碩士
畢業學年度88
出版年
語文別中文
關鍵字(中)多光束 相位型光柵 光柵
關鍵字(英)Phase-Only Multi-Beam grating
摘要(中)論 文 摘 要 本研究介紹多光束相位型光柵之設計、實際製作與量測的結果,並進一步比較理論設計與實際製作的誤差。論文中採用兩種設計法設計多光束相位型光柵。第一種設計方法是廣義映射法(generalized projection)。順利地使用廣義映射法求得連續相位方程,且有效效率達89%至97%。因此,我們嘗試使用此法求解二階相位方程,結果不如連續相位方程的效率佳。第二種設計法是Dammann相位光柵設計法。得到對稱型Dammann多光束二階相位型光柵,有效效率只有65%至70%。所以,將對稱型Dammann光柵相位分布方程式,加以改良成非對稱Dammann光柵相位分布方程,有效效率提高為85%至89%左右,而且製作容易,可供廣泛的使用。最後,使用半導體製程製作此光柵,實際的量測以驗證理論設計。實驗結果與理論設計極為相似,顯示非對稱Dammann光柵設計法,可提高多光束相位光柵之有效效率。
摘要(英)Abstract This thesis investigates the design and fabrication of binary phase gratings to produce multiple beams that can be used to read multiple tracks of an optical disk simultaneously. Two vastly different design methods, the method of generalized projections and the Dammann Grating method, were investigated. The generalized projection method was found to be extremely effective for designing gratings with continuously varying phase profiles but not suitable for designing two-level binary phase gratings. With continuous phase gratings, we achieved designs with as much as 97% of the input power going into the desired multiple diffraction orders. The Dammann grating method, on the other hand, specifically applies to the design of two-level gratings. The design equations are simplified when the grating profile of a single grating period is symmetric. Using the symmetric approach, we designed gratings with total efficiencies on the order of 65-70%. Using the Dammann method to design gratings with asymmetric profiles gave better efficiencies - on the order of 85-89%. Two-level phase gratings were also fabricated based on these designs. There was good agreement between the design predictions and the measurements of the fabricated gratings.
論文目次目錄 表錄…………………………………………………………….2 圖錄…………………………….………………………………3 第一章 緒論…………………………………………………5 第二章 廣義映射(Generalized Projection)設計法……8 2.1 凸映射(Convex Projection)法……………………..10 2.1.1 凸集合(Convex Set)………………………..10 2.1.2 凸映射………………………………………..11 2.2 廣義映射法……………………………………………….13 2.2.1 廣義映射法基本理論…………………………….13 2.2.2 廣義映射法的問題……………………………….14 第三章 Dammann光柵設計法……………………………….17 3.1簡介………………………………………………………17 3.2基本理論…………………………………………………18 3.3優化………………………………………………………20 3.4結論………………………………………………………21 第四章 多光束光柵的設計結果…………………………….22 4.1廣義映射法設計連續相位型光柵的結果……….…….23 4.2廣義映射法設計二階相位型光柵的結果……….…….27 4.3對稱型Dammann光柵設計與結果…………….…53 4.4非對稱型Dammann光柵設計與結果………….…61 第五章 多光束相位型光柵的製作與量測………………….65 5.1理想效率與理想蝕刻深度的計算結果…………67 5.2製作光柵的實驗步驟……………………………69 5.3量測結果…………………………………………70 5.4分析設計與實際製作的結果……………………72 第六章 結語………………………………………………….74 參考文獻……………………………………………………….76 附錄…………………………………………………………….78
參考文獻參 考 文 獻 [1] L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am.J.Math. 73,615-624(1951) [2] R. E. Collin, Antenna and Radiowave Propagation ,pp.107-151 (McGraw-Hill,New York,1985) [3] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from inage and diffraction plane pictures,” Optik 35,237(1972) [4] J. R. Fineup, “Phase retrieval algorithm: a comparison,” Appl. Opt.21,2758-2769(1982) [5] A. Levi, “Image restoration by the method of projections with applications to the phase and magnitude retrieval problems,” Ph.D. dissertation (Department of Electrical, Computer, and System Engineering, Rensselaer Polytechnic Institute, Troy, N. Y., 1983) [6] Henry Stark, William C. Catino and Joseph L.LoCicero, “Design of phase gratings by generalized projections,” J. Opt. Soc. Am. A, Vol.8, No.3, 566-571(1991) [7] D. C. Youla and H. Webb, “Image restoration by the method of convex projection: part I, theory,” IEEE Trans. Med. Imag. MI-1, 81-94 (1982) [8] A. Levi and H. Stark, “Image restoration by the method of generalized projection with application to restoration from magnitude,” J. Opt. Soc. Am. A1, 932-943 (1984) [9] H. Dammann and E. Eklotz, Optics Acta 24 505 (1977) [10] J. Jahns, M. E. Prise, M. M. Downs, S. J. Leger and N. Streibl, “Dammann gratings for array generation,” submitted to Opt. Eng.(1988) [11] J. Turunen, A. Vasara, J. Westerholm, G. Jin and A. Salin, J. Phys. D 21 ,102 (1988) [12] W. Tornig, Numerische Mathematik fur Ingenieure und Physiker (Springer, 1979) [13] S. D. Conte and C. deBoor, Elementary numerical analysis (McGraw-Hill, 1980) [14] U. Killat, G. Rabe and W. Rave, Fiber and Integrated Optics 4 159 (1982) [15] Ulrich Krackhardt, Joseph N Mait, and Norbert Streibl, “Upper bound on diffraction efficiency of phase-only fanuout elements,” Applied Optic, Vol. 31, No. 1, 27-37 (1992) [16] U. Krackhardt and N. Streibl, “Design of Dammann-gratings for Array Generation,” OPTICS COMMUNICATION, number1,2, volume74, 31-36 (1989) [17] Henery Stark, Image Recovery Theory and Application,chapter2,chapter8 (Academic Press,1987) [18] 盧兆暘, 繞射式光學元件設計與製程之整合研究, 國立台灣大學應用力學研究所碩士論文, 中華民國八十五年。 [19] 施錫富, 全像光學元件在光學讀取頭上應用之研究, 國立中央大學光電研究所博士論文, 中華民國八十八年。
論文頁數100
附註
全文點閱次數
資料建置時間
轉檔日期
全文檔存取記錄
異動記錄M admin Y2008.M7.D3 23:17 61.59.161.35