輔仁大學
學術資源網

記錄編號3292
狀態NC088FJU00255005
助教查核
索書號
學校名稱輔仁大學
系所名稱食品營養學系
舊系所名稱
學號486446050
研究生(中)戴志全
研究生(英)Chih-Chyuan Tai
論文名稱(中)澱粉-蔗糖酯複合物之形成對高直鏈玉米澱粉與關華豆膠相容性、黏度及失水率之影響
論文名稱(英)Effect of the HylonⅦ-Sucrose Ester Complex Formation on Compatibility, Viscosity and Water Loss of the HylonⅦ-Guar Gum Mixture
其他題名
指導教授(中)陳烱堂
指導教授(英)John T. Chien
校內全文開放日期不公開
校外全文開放日期不公開
全文不開放理由
電子全文送交國圖.同意
國圖全文開放日期.2005.01.01
檔案說明電子全文
電子全文01
學位類別碩士
畢業學年度88
出版年
語文別中文
關鍵字(中)高直鏈玉米澱粉 蔗糖酯 關華豆膠 相容性 玻璃轉化溫度 sub-Tg 黏度
關鍵字(英)HylonVII sucrose ester guar gum Compatibility Tg sub-Tg viscosity
摘要(中)不相容的澱粉與多醣類分子會相互排擠,造成自分子聚集而加速澱粉老化。因此提高澱粉與多醣類之相容性,則可改善含澱粉食品品質及物性性質。本研究擬將高親水性之蔗糖酯(P-1670)與高直鏈玉米澱粉(HylonⅦ)複合,探討複合後所造成裸露之蔗糖基是否增加在水溶液中與關華豆膠分子外端分支接觸的機會,以及提高HylonⅦ與關華豆膠之相容性。實驗以玻璃轉化溫度(Tg)變化來評估兩成份之相容程度,亦透過失水率和黏度分析來了解相容性對膠體結構之影響。 示差掃描熱分析(DSC)的結果顯示,HylonⅦ於79.9℃、複合物在97.3℃及關華豆膠於56.6, 68.4和97.8℃呈現Tg。HylonⅦ-關華豆膠混合膠體雖在66.7℃仍存在關華豆膠的Tg,但原HylonⅦ的Tg已消失。反觀複合物-關華豆膠混合膠體,不但原成份的Tg消失,且在80.4℃另出現異於原成份的新Tg。以動態機械分析(DMA)亦發現,HylonⅦ或複合物與關華豆膠之混合膠體分別在92.2℃和104.5℃均出現新Tg。原成份的Tg雖然存在,但其tagδ的波峰高度均已下降,顯示因混合後各成份分子間,因部份相容所造成交互作用,而降低分子移動之體積分率。故由Tg分析結果可知HylonⅦ或複合物與關華豆膠均呈現部份相容,且複合物與關華豆膠之相容程度高於HylonⅦ-關華豆膠混合膠體者。各樣品在Tg以下溫度均發現sub-Tg及sub-Tg焓,其成因可能與聚合物側鏈分子之移動性有關。 膠體於90±2℃之失水率分析發現,關華豆膠之添加可降低HylonⅦ及複合物的失水率,顯示兩相容之成份可明顯改善混合膠體之保水性。但複合物-關華豆膠混合膠體之失水率高於HylonⅦ-關華豆膠混合膠體者,這可能與HylonⅦ和蔗糖酯複合後的水合體積改變有關。 HylonⅦ、複合物、關華豆膠及其混合膠體貯存前、後,於25.5±0.1℃的之視黏度依序均為:HylonⅦ-關華豆膠混合膠體>複合物-關華豆膠混合膠體>關華豆膠>複合物> HylonⅦ。且HylonⅦ或複合物與關華豆膠混合膠體之視黏度均高於其個別成份視黏度之加成。由此可知,兩部份相容成份之混合可提高混合膠體之視黏度。此與失水率分析之趨勢相同。各膠體經貯存1天後的視黏度均高於未經貯存者,顯示膠體強度會因貯存而增強。 各膠體溶液的n值均介於0與1之間(0
摘要(英)Incompatibility between starch and polysaccharide may result to form self-aggregation of individual molecules in an aqueous solution, and lead to retrogradation of starch. The quality and physical properties of starch-containing foods were thus degraded. This could be improved by increasing compatibility between starch and polysaccharide. Complex formation of sucrose ester and starch was also commonly used to retard starch retrogradation. It was of interest to investigate whether the complex may also increase compatibility between guar gum and HylonⅦ, amylomaize starch with 58.8% amylose content. In this study, compatibility of two components was investigated by changes in glass transition temperatures (Tg). Water loss and viscosity analysis can subsequently be used to monitor the influence of compatibility on the gel. Results of differential scanning calorimetry (DSC) showed that HylonⅦ and the complex appeared glass transitions at 79.9℃ and 97.3℃, respectively, whereas, Tgs for guar gum were at 56.6, 68.4, 97.8℃. The HylonⅦ-guar gum mixture, appeared Tg at 66.7℃, which was close to the Tg of guar gum, however, the Tg of HylonⅦ was disappeared. On the other hand, the complex-guar gum no longer showed the Tgs of two individual components, and exhibited a new Tg at 80.4℃, which was significantly different from the Tgs of two individual components. Similarly, results of dynamic mechanical analysis (DMA) appeared a new Tg at 92.2℃and 104.5℃ for the HylonⅦ-guar gum and complex-guar gum mixture, respectively. Although the Tgs of individual the components were still appeared in the above mixtures, the heights of tanδ peaks declined. Above evidence implies that interaction, which led to close contact between two partially compatible molecules in a mixed gel, decreased the volume fraction of the relaxing phase. Both HylonⅦ and the complex were partial compatible with guar gum, and the complex-guar gum mixture shows higher compatibility than the corresponding HylonⅦ-guar gum mixture. All the samples appeared the sub-Tgs and sub-Tg endotherms below the corresponding Tgs. The sub-Tg relaxation may relate to side-chain relaxation of a polymer. Addition of guar gum decreased water loss of HylonⅦ and the complex, while being heated at 90±2℃. This result indicates that water holding capacity of a mixed gel was significant improved by mixing two compatible components. Water loss of the complex-guar gum mixture was higher than that of the HylonⅦ-guar gum mixture. This was due to change in hydrodynamic volume for the complex. Apparent viscosity of above samples at 25.5±0.1℃ were as follows: the HylonⅦ-guar gum mixture > the complex-guar gum mixture > guar gum > the complex > HylonⅦ. Apparent viscosities of the HylonⅦ-guar gum and complex-guar gum mixtures were higher than the sum of viscosities of individual components. This result shows that apparent viscosity increased with mixing two compatible components. Apparent viscosity of the HylonⅦ-guar gum mixture was higher than that of the complex-guar gum mixture. Viscosity results were consistent with those of water loss. After one day of storage, all the gels showed higher apparent viscosities than those of no storage. It means that the gel strength increased during storage. All the mixtures showed pseudoplastic behavior (0
論文目次第一章 緒 言 1 第二章 文獻回顧 3 一、澱粉的結構與糊化特性 3 二、澱粉和乳化劑的交互作用 12 (一)澱粉和乳化劑的交互作用形式 12 (二)澱粉-乳化劑複合物形成的影響因素 17 (三)乳化劑與脂質對澱粉流變性質的影響 31 三、澱粉與食用膠的交互作用 35 (一)澱粉與食用膠的相容性 35 (二)流變性質與失水率變化 39 四、玻璃轉化現象 48 (一)玻璃轉化溫度與相容性 48 (二)玻璃轉化溫度的影響因子 57 1 聚合物組成與分子量 57 2 交互作用 58 3 聚合物結晶程度 60 4 塑化劑的影響 63 (三)澱粉Tg以下的熱轉換 64 第三章 材料與方法 79 一、材料 79 二、方法 80 (一)水分含量測定 80 (二)直鏈澱粉定量 80 (三)澱粉糊化 81 (四)HylonⅦ複合物製備 81 (五)混合膠體製備 82 (六)示差掃描熱分析 82 1 糊化溫度測定 82 2 複合量之測定 83 3 Tg及sub-Tg焓測定 83 (七)動態機械分析 84 (八)失水率分析 84 (九)黏度分析 84 (十)統計分析 85 第四章 結果與討論 86 一、高直鏈玉米澱粉的糊化 86 二、飽和複合量測定 88 三、玻璃轉化溫度與相容性 91 (一)示差掃描熱分析 91 (二)動態機械分析 99 四、失水率分析 106 五、黏度分析 109 第五章 結 論 117 參考文獻 119
參考文獻參考文獻 王威基。1994。Annealing過程中去脂高直鏈米澱粉-乳化劑複合物形成及物性之影響。輔仁大學食品營養研究所碩士論文。 吳淑靜,周政輝,范晉嘉,盧訓。1997。不同蔗糖酯對米澱粉形成複合物程度之影響。中國農業化學會誌。35: 220-224。 林珍宇,陳?堂。1995。貯存條件對鹼處理麵筋蛋白與糊化玉米澱粉相容性之影響。中國農業化學會誌。33: 65-76。 陳仁威。1999。以玻璃轉化溫度探討高直鏈玉米澱粉與活性麵筋之相容性。輔仁大學食品營養系研究所碩士論文。 陳?堂。1993。蛋白質與多醣類水溶液之不相容性。食品科學。20: 9-20。 Aklonis, J.J., Macknight, W.J., and Shen, M. (Ed.), 1972. Relaxation in the glassy state. In Itroduction to Polymer Viscoelasticity. p. 81-85. Wiley-Interscience, N.Y. Akoh, C.C. 1992. Emulsification properties of polyesters and sucrose ester blends I: carbohydrate fatty acid polyesters. J. Agric. Cereal. Sci. 69: 9-19. Alloncle, M., Lefebvre, J., Llamas, G., and Doublier, J.L. 1989. A rheological characterization of cereal starch-galatomannan mixtures. Cereal Chem. 66: 90-93. Annable, P., Fitton, M.G., Harris, B., Philips, G.O., and Willians, P.A. 1994. Phase behavior and rheology of mixed polymer systems containing starch. Food Hydrocoll. 8: 351-359. Appelqvist, I.A.M., Cooke, D., Gidley, M.J., and Lane, S.J. 1993. Thermal properties of polysaccharides at low moisture: 1-an endothermic melting process and water-carbohydrate interactions. Carbohydr. Polym. 20: 291-299. Biliaderis, C.G. 1992. Characterization of starch networks by small strain dynamic rheometry. In Developments in Carbohydrate Chemistry. R.J. Alexander and H.F. Zobel (Ed.), p. 87-135. Am. Assoc. Cereal Chem., Inc., M.N. Biliaderis, C.G., Arvanitoyannis, I., Izydorczyk, M.S., and Prokopowich, D.J. 1997. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch/Stärke 49: 278-283. Biliaderis, C.G., Grant, D.R., and Vose, J.R. 1981. Structural characterization of legume starches. I. Amylopectin and ?-limit dextrins. Cereal Chem. 58: 496-502. Biliaderis, C.G., Page, C.M., Maurice, T.J., and Juliano, B.O. 1986. Thermal characterization of rice starches: A polymeric approach to phase transitions of granular starch. J. Agric. Food Chem. 34: 6-14. Blanshard, J.M.V. 1986. The significance of the structure and function of the starch granule in baked products. In Chemistry and Physic of Baking. J.M.V. Blanshard, P.J. Frazier, and T. Galliard (Ed.), p. 1-13. Royla Sco. of Chemistry, London, U.K. Boyer, R.F. 1974. Relationships between structure and mechanical behavior. In Polymeric Materials. E. Bear and S.V. Radcliffe (Ed.), p. 227-368. Am. Soc. Metals. Ohio. Buera, M.P., Jouppila, K., Roos, Y.H., and Chirife, J. 1998. Differential scanning calorimetry glass transition temperatures of white bread and mold growth in the putative glassy state. Cereal Chem. 75: 64-69. Chien, J.T., Lien, Y.Y., and Shoemaker C.F. 1999. Effect of polarity of complexing agents on thermal and rheological properties of rice starch gels. Cereal Chem. 76: 837-842. Chiotti, P. and Morris, V. 1978. Low temperature pyrolysis of grain dust. Cereal Food World 23: 314-322. Conde-Petit, B. and Escher, F. 1992. Gelation of low concentration starch systems induced by starch emulsifier complexation. Food Hydrocoll. 6: 223-229. Conde-Petit, B., Escher, F., and Zurich. 1994. Influence of starch —lipid complexation on the aging behavior of high concentration starch gels. Starch/Stärke 46: 172-177. Conde-Petit, B., Pfirter, A., and Escher, F. 1997. Influence of xanthan on the rheological properties of aqueous starch-emulsifier systems. Food Hydrocoll. 11: 393-399. Davidou, S., Meste, M., Debever, E., and Bekaert, D. 1996. A contribution to the study of staling of white bread: effect of water and hydrocolloid. Food Hydrocoll. 10: 375-383. Dziezak, J.D. 1988. Emulsifiers: the interfactial key to emulsion stability. Food Technol. 172, 174-180, 182, 183, 185, 186. Eidam, D., Kulicke, W.M., Kuhn, K., and Stute, R. 1995. Formation of maize starch gels selectively regulated by the addition of hydrocolloids. Starch/Stärke 47: 378-384. Elfak, A.M., Pass, G., Phillips, G.O., and Morley, R.G. 1977. The viscosity of dilute solution of guar gum and locust bean gum with and without added sugars. J. Sci. Food Argic. 28: 895-899. Eliasson, A.C. 1985. Starch gelatinization in the presence of emulsifiers: A morphological study of wheat starch. Starch/Stärke 37: 411-415 Evans, I.D. 1986. An investigation of starch/surfactant interactions using viscosimetry and differential scanning calorimetry. Starch/Stärke 38: 227-235. Forssell, P.M., Mikkilä, J.M., Moates, G.K., and Parker, R. 1997. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr. Polym. 34: 275-282. French, D. 1984. Organization of starch granules. In Starch Chemistry and Technology. R.L. Whistler, J.M. BeMiller, and D.F. Paschall (Ed.), p. 183-247. Academic Press: N.Y. Galliard, T. and Bowler, P. 1987. In Morphology and composition of starch : Properties and potential : Starch. p. 55-78. John Wiely and Sons. N .Y. Gidley, M.J., Cooke, D., and Ward-Smith, S. 1993. Low moisture polysaccharide system : thermal and spectroscopic aspects. In The Glassy State in Foods. J.M.V. Blanshard, and P.J. Lillford (Ed.), Nottingham University Press: Loughborough, U.K. Gilbert, G.A. and Spragg, S.P. 1964. Methods in carbohydrate chemistry. In starch. R.L. Whistler (Ed.), p. 168-169. Academic Press, N.Y. Godet, M.C., Buleon, A., Train, V., and Clolnna, P. 1993. Structure features of fatty acid-amylose complexes. Carbohydr. Polym. 21: 91-95. Guraya, H.S., Kadan, R.S., and Champagne, E.T. 1997. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index and viscosity. Cereal Chem. 74: 561-565. Hahn, D.E. and Hood, L.F. 1987. Factors influencing corn starch-lipid complexing. Cereal Chem. 64: 81-85. Hallberg, L.M. and Chinachoti, P. 1992. Dynamic mechanical analysis for glass transitions in long shelf-life bread. J. Food Sci. 57: 1201-1204, 1229. Hibi, Y. 1994. Effect of lipids on the viscoelastic properties of rice starch gel. Starch/Stärke 2: 44-48. Hizukuri, S. 1985. Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules. Carbohydr. Res. 141: 295-306. Hizukuri, S. 1986. Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr. Res. 147: 342-347. Jaspers, M.E.A.P., Leeuwen, F.F.V., Nieuwenhuis, H.J.W., and Vianen, G.M. 1987. High performace liquid chromatographic separation of sucrose fatty acid esters. J. Agric. cereal Sci. 64: 1020-1025. Jovanovich, G., Zamponi, R.A., Lupano, C.E., and Anon. M.C. 1992. Effect of water content on the formation and dissociation of the amylose-lipid complex in wheat flour. J. Agric Food Chem. 40: 1789-1793. Kalichevsky, M.T. and Blanshard, J.M.V. 1992. A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA. Carbohydr. Polym. 19: 271-278. Kalichevsky, M.T. and Ring, S.G. 1987. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydr. Res. 162: 323-328. Kalichevsky, M.T., Jaroszkiewicz, E.M., Ablett, S., Blanshard, J.M.V., and Lillford, P.J. 1992. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polym. 18: 77-88. Kasemsuwan, T. and Jane, J. 1994. Location of amylose in normal starch granmles. II Location of phosphodiester cross-linking by phosphorus-31 nuclear magnetic resonance. Cereal Chem. 71: 282-287. Kim, C.S. and Walker, C.E. 1992. Changes in starch pasting properties due to sugars and emulsifiers as determined by viscosity measurement. J. Food Sci. 57: 1009-1013. Krog, N. 1971. Amylose complexing effect of food grade emulsifiers. Starch/Stärke 23: 206-210. Kugimiya, M., and Donovan, J.W., and Wong, R.Y. 1980. Phase transition of amylose-lipid complexes in starches: A calorimetric study. Starch/Stärke 8: 265-270. Kulicke, W.-M., Eidam, D., Kath, F., Kix, M., and Kull, A.H. 1996. Hydrocolloids and rheology: Regulation of visco-elastic characteristics of waxy rice starch in mixtures with galactomannans. Starch/Stärke 48: 105-114. Lai, Y.C., Sung, P.H., and Chien, J.T. 2000. Evaluation of compatibility of rice starch and pectins by Tg and sub-Tg Endotherms and the effect of compatibility on gel viscosity and water loss. Accepted by Cereal Chem. Levine, H. and Slade, L. 1986. A polymer physico-chemical approach to the study of commerical starch hydrolysis products (SHPs). Carbohydr. Polym. 6: 213-244. Lii, C.Y., Shao, Y.Y., and Tseng, K.H. 1995. Gelation mechanism and Rheological properties of rice starch. Cereal Chem. 72: 393-400. Liu, H., Arntfield, S.D., Holley, R.A., and Aime, D.B. 1997. Amylose-lipid complex formation in acetylated pea starch-lipid systems. Cereal Chem. 74: 159-162. Manners, D.J. 1989. Recent developments in our understanding of amylopectin structure. Carbohydr. Polym. 11: 87-112. Mathot, V.B.F. 1994. In Calorimetry and Thermal Analysis of Polymers. p. 181-188. Carl. Hanser. Verlag. Munich. Miura, M., Nishimura, A., and Katsuta, K. 1992. Influence of addition of polyols and food emulsifiers on the retrogradation rate of starch. Food Structure 11: 225-236. Mizuno, A., Mitsuiki, M., and Motoki, M. 1998. Effect of crystallinity on the glass transition temperature of starch. J. Agric. Food Chem. 46: 98-103. Morris, V.J. 1986. Multicomponent gels. In Gums and Stabilizers for the Food Industry 3. G.O. Phillips, D.J. Wedlock, and P.A. Williams (Ed.), p. 87-99. Elsevier Applied Science Publishers Ltd., N.Y. Mua, J.P., Jackson, D.S., and Lincoln, N.E. 1995. Gelatinization and solubility properties of commercial oat starch. Starch/Stärke 47: 2-7. Murayama, T. 1978. Introduction to dynamic mechanical behavior. In Dynamic mechanical analysis of polymeric material. p. 1-35. Elsevier Applied Science Publishers Ltd., N.Y. Nielsen, L.E. 1974. Dynamic mechanical properties. In Mechenical Properties of Polymers and Composites. p. 139-235 Marcel Dekker: N.Y. Nikuni, Z. 1978. Studies on starch granules. Starch/Stärke 30: 105-111. Noel, T.R., Ring, S.G., and Whittan, M.A. 1993. Relaxation in supercooled carbohydrate liquids. In The Glassy State in Food. J.M.V. Blanshard and P.J. Lillford (Ed.), p. 173-188. Nottingham University Press: Nottingham. Olabisi, O., Robeson, L.M., and Shaw, M.T. 1979. Polymer-Polymer Miscibility. Adm. N.Y. Paredes-lópez, O., Bello-pérez, L.A., and López, M.G. 1994. Amylopectin: structure, gelatinisation and retrogradation studies. Food Chem. 50: 411-417. Roos, T. and Karel, M. 1991. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J. Food Sci. 56: 38-43. Rotter, G. and Ishida, H. 1992. Dynamic mechanical analysis of the glass transition: curve resolving allpied to polymers. Macromolecules 25: 2170-2176. Roudaut, G., Maglione, M., Dusschoten, D.V., and Meste, M.L. 1999. Molecular mobility in glassy bread: A multispectroscopy approach. Cereal Chem. 76: 70-77. Russel, P.L. 1983. A kinetic study of bread staling by differential scanning calorimetry and compressibility measurements: the effect of added monoglyceride. J. Cereal Sci. 1: 297-303. Sajjan, S.U. and Rao, M.R. 1987. Effect of hydrocolloids on the rheological properties of wheat starch. Carbohydr. Polym. 7: 395-402. Sarko, A. and Wu, H.C.H. 1978. Crystal structures of A-, B- and C-polymorphs of amylose and starch. Starch/Stärke 30: 73-78. SAS Institute Inc. 1990. SAS Porcedures and SAS/Graph User’s Guide. Version 6. Software Release 6.11 for Windows. SAS Institute : Cary. NC U.S.A.. Schenz, T.W. 1995. Glass transitions and product stability-an overview. Food Hydrocoll. 9: 307-315. Setser, C.S. 1992. Water and Food Dispersions. Ch. 2, In Food Theory and Applications. J. Bowers (Ed.), p. 7-68. Macmillan Publishing company, N.Y. Sharma, S.C. 1981. Gum and hydrocolloids in oil-water emulsions. Food Technol. 35: 59-67. Shogren, R.L. 1992. Effect of moisture content on the melting and subsequent physical aging of corn starch. Carbohydr. Polym. 19: 83-90. Slade, L. and Levine, H. 1987. Recent advances in starch retrogradation. In Iudustrial Polysaccharides-The Impact of Biotechnology and Advanced Methodologies. Stivala, S.S., Crescenzi, V., Dea, I.C.M. (Ed.), p. 387-430. Gordon and Breach Science Publishers. N.Y. Slade, L. and Levine, H. 1994. Glass transitions and water-food structure interactions. In Advances in Food and Nutrition Research. (Ed.), J.E. kinsella, Academic Press, San Diego. Sperling, L.H. 1992. Hydrolysis with β—amylase and preparation of the β—amylase limit dextrin of amylopectin. In Methods in Carbohydrate Chemistry. Vol. IV, R.L. Whistler (ed.), Academic Press, N.Y. Spies, R.D. and Hoseney, R.C. 1982. Effect of sugars on starch gelatinization. Cereal Chem. 59: 128-131. Struik, L.C.E. 1978. Physical aging in amorphous polymers and other materials. Elsevier. Adm. Sudhakar, V., Singhal, R.S., and Kulkarni, P.R. 1992. Starch-gum interactions: formulations and functionality using amaranth/corn starch and CMC. Starch/Stärke 44: 369-374. Sudhakar, V., Singhal, R.S., and Kulkarni, P.R. 1995. Effect of sucrose on starch-hydrocolloid interaction. Food Chem. 52: 281-284. Sudhakar, V., Singhal, R.S., and Kulkarni, P.R. 1996. Starch-galactomannan interaction: functionality and rheological aspects. Food Chem. 55: 259-264. Takeda, Y., Shitaozono, T., and Hizukuri, S. 1990. Structures of subtractions corn amylose. Carbohydr. Res. 199: 207-214. Tester, R.F. and Morrison, W.R. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose and lipids. Cereal Chem. 67: 551-557. Thiewes, H.J. and Steeneken, P.A.M. 1997. The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content. Carbohydr. Polym. 32: 123-130. Toledo, R.T. 1991. Fundamentals of Food Process Engineering. 2nd ed. Van Nostrand Reinhold., U.S.A. Tolstoguzov, V.B. 1991. Functional properties of food protein and role of protein-polysaccharide interaction. Food Hydrocoll. 4: 429-468. Vodovotz, Y. and Chinachoti, P. 1996. Thermal transition in gelatinized wheat starch at different moisture contents by dynamic mechanical analysis. J. Food Sci. 61: 932-941. Vodovotz, Y., Hallberg, L., and Chinachoti, P. 1996. Effect of aging and drying on thermomechanical properties of white bread as characterized by dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). Cereal Chem. 73: 264-270. Wetton, R.E. 1986. Developments in Polymer Characterization. In Dynamic Mechanical Thermal Analysis of Polymers and Related System. J.V. Dawkins (Ed.), p. 179-222. Elsevier Applied Science Publishers Ltd., N.Y. Wong, R.B.K. and Lelievre, J. 1981. Viscoelasity behavior of wheat starch pastes. Rheol. Acta. 20: 299-307. Yoshimura, M., Takaya, T., and Nishinari, K. 1996. Effects of konjac-glucomannan on the gelatinization and retrogradation of corn starch as determined by rheology and differential scanning calorimetry. J. Agric. Food Chem. 44: 2970-2976. Yuan, R.C. and Thompson, D.B. 1994. Sub-Tg thermal properties of amorphous waxy starch and its derivatives. Carbohydr. Polym. 25: 1-6. Yuan, R.C., Thompson, D.B., and Boyer, C.D. 1993. Fine structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from three wx-containing genotype in two inbread lines. Cereal Chem. 70: 81-89. Zeleznak, K.J. and Hoseney, R.C. 1987. The glass transition in starch. Cereal Chem. 64: 121-124. Zeng, M., Morris, C.F., Batey, I.L., and Wrigley, C.W. 1997. Sources of variation for starch gelatinization, pasting and gelation properties in wheat. Cereal Chem. 74: 63-71. Zobel, H.F. 1984. Gelatinization of starch and mechanical properties of starch pastes. In Starch Chemistry and Technology. R. Whistler, J.N. Bemiller, and E.F. Paschall (Ed.), p. 285-311. Academic Press: N.Y.
論文頁數130
附註
全文點閱次數
資料建置時間
轉檔日期
全文檔存取記錄
異動記錄M admin Y2008.M7.D3 23:17 61.59.161.35