輔仁大學
學術資源網

記錄編號3293
狀態NC088FJU00255006
助教查核
索書號
學校名稱輔仁大學
系所名稱食品營養學系
舊系所名稱
學號485446065
研究生(中)李宗原
研究生(英)Li Tzung-Yuan
論文名稱(中)TCN1米澱粉與食用膠之相容性對澱粉回凝之影響
論文名稱(英)Effect of Compatibility of TCN1 Rice Starch and Edible Gums on Retrogradation of Starch
其他題名
指導教授(中)陳炯堂博士
指導教授(英)
校內全文開放日期
校外全文開放日期
全文不開放理由
電子全文送交國圖.
國圖全文開放日期.
檔案說明
電子全文
學位類別碩士
畢業學年度88
出版年
語文別中文
關鍵字(中)米澱粉 食用膠 相容性 玻璃轉化 sub-Tg 回凝
關鍵字(英)rice starch edible gum compatibility galss transition sub-Tg retrogradation
摘要(中)食用膠常添加於含澱粉之食品中,藉以修飾食品物性及改善食品品質。然而不同種類之食用膠,其物化特性及與澱粉相容性各異,對其品質可能產生不同影響。此外,含澱粉食品經貯存後,常因澱粉回凝而使品質下降,食品加工業對於貯存後品質下降,常須藉由抑制澱粉回凝加以控制。實驗中分析台中在來一號(TCN1)米澱粉、食用膠及其混合物於不同水活性下玻璃轉化溫度(Tg)之變化情形,探討兩者間之相容性,以改善含澱粉食品之物性及品質,並了解添加不同相容性之食用膠對TCN1回凝之影響。 示差掃描熱分析(DSC)觀察,TCN1、高甲氧基果膠、低甲氧基果膠、關華豆膠、刺槐豆膠、i-紅藻膠、k-紅藻膠及TCN1-食用膠混合物於aw=0.59,均出現sub-Tg及Tg。此外,除了 i-紅藻膠及k-紅藻膠外,其餘樣品在sub-Tg溫度之上,均出現sub-Tg焓。TCN1-食用膠混合物中,TCN1與高甲氧基果膠原來Tg均消失,並出現一新Tg,顯示二者相容;TCN1與低甲氧基果膠、刺槐豆膠維持各自之Tg,顯示兩者不相容;而TCN1與關華豆膠、i-紅藻膠及k-紅藻膠則呈部份相容。於aw=0.76,TCN1與高甲氧基果膠仍相容,但與關華豆膠則不相容。 動態機械分析(DMA)觀察,發現 TCN1與高甲氧基果膠於aw=0.76,兩者原有Tg皆消失,而出現兩新Tg,故判定兩者相容;關華豆膠其一Tg波峰與TCN1原Tg間形成一新Tg,故TCN1與關華豆膠為部份相容。根據DSC及DMA實驗,TCN1與各食用膠之相容程度分別為:高甲氧基果膠>關華豆膠,i-紅藻膠,k-紅藻膠>刺槐豆膠,低甲氧基果膠。 於實驗條件下,食用膠分為凝膠及未凝膠兩種。添加部份相容之紅藻膠於TCN1中,貯存0-3天時TCN1會影響紅藻膠凝膠,而紅藻膠會抑制澱粉回凝;貯存7-35天後,兩成份反而會促進其凝膠及回凝。在貯存7天時,TCN1添加未凝膠之食用膠後,其回凝熔解焓值分別為:低甲氧基果膠>刺槐豆膠>關華豆膠>TCN1>高甲氧基果膠,顯示TCN1添加之食用膠愈不相容,其回凝程度愈高;貯存35天時,對部份相容與不相容混合物而言,此趨勢則不明顯,但添加與TCN1相容之高甲氧基果膠,則會抑制TCN1之回凝。 將TCN1回凝分為二階段:0-7天為第一階段,7-35天為第二階段。其中第一階段之回凝主要由直鏈澱粉所主導,第二階段則逐漸轉為支鏈澱粉。添加相容(高甲氧基果膠)與部份相容(關華豆膠)之食用膠在第一階段降低TCN1之Avrami動力學參數n值,此即意謂結晶增長型態由碟狀轉為桿狀;但添加不相容(低甲氧基果膠)之食用膠,其n值並未改變;第二階段中添加食用膠則皆不影響TCN1之n值。若將n值固定為1,添加高甲氧基果膠與關華豆膠可下降TCN1第一階段反應速率(k值),低甲氧基果膠之添加則不影響k值。第二階段中,添加高甲氧基果膠及關華豆膠並不明顯影響k值;添加低甲氧基果膠則導致k值增加。
摘要(英)Edible gums were often added into starch-containing foods to enhance their physical properties and qualities. Due to the inherent natures, edible gums may act differently on compatibility with starch, which play an important role on physicochemical properties and qualities of foods. Decrease in qualities during storage due to starch retrogradation often occurred in starch-containing foods. Inhibition of starch retrogradation is of major concern to food industry to avoid this degrading effect. Compatibility between TCN1 rice starch and edible gums could be evidenced by changes in glass transition (Tg) in their mixtures at various water activities. The purpose of the study is to improve the physical properties and qualities of foods by adding compatible gum into starch. Influence of starch-gum compatibility on starch retrogradation during storage was also studied. The freeze-dried and moisture-equilibrated samples (aw=0.59) of TCN1, high-methoxyl pectin, low-methoxyl pectin, guar gum, locust bean gum, i-carrageenan, k-carrageenan and their mixtures appeared sub-Tgs and Tgs in the analyze of differential scanning calorimetry (DSC). Sub-Tg endotherms were also shown in all the samples except i-carrageenan and k-carrageenan. TCN1 and high-methoxyl pectin are compatible, due to disappearance of the individual components’ Tgs and appearance of a new Tg in the mixture. TCN1 is incompatible with low-methoxyl pectin and locust bean gum because the individual components’ Tgs still appeared in the mixtures. TCN1 showed partially compatible with guar gum, i-carrageenan, and k-carrageenan. Moisture-equilibrated TCN1 (aw=0.76) was still compatible with high-methoxyl pectin, but showed incompatible with guar gum. The above samples were equilibrated at aw=0.76 and further analyzed by dynamic mechanical analysis (DMA). TCN1 and high-methoxyl pectin were found to be compatible, since the individual components’ Tgs disappeared and new Tgs were found in the mixture. Partial compatibility between TCN1 and guar gum was also evidenced due to appearance of a new Tg. Results of DSC and DMA showed that the degree of compatibility with TCN1 were as follows: high-methoxyl pectin> guar gum, i-carrageenan, k-carrageenan> locust bean gum, low-methoxyl pectin. Under our experimental conditions, the added edible gums can be grouped into gelling and non-gelling. Starch retrogradation and gum gelling properties were changed, when partially compatible carrageenans were added into TCN1. In the TCN1-carrageenan mixtures, retrogradation and gelation were inhibited during 0-3 days of storage, but were substantially increased after 7 days of storage. 7-day retrogradation enthalpies of TCN1 with adding non-gelling gums were as follows: low-methoxyl pectin>locust bean gum>guar gum>TCN1>high-methoxyl pectin. This implys that the addition of less compatible gums into TCN1 may lead to an increase of starch retrogradation during storage. The trend was not clear between the partial compatible and the incompatible mixture for 35 day of storage. However, high-methoxyl pectin was still found to be compatible with TCN1, and that would inhibit its retrogradation. The process of TCN1 retrogradation could be divided to two stages: the first stage, ranging 0-7 days and the second stage, ranging 7-35 days of storage. At the first stage, the Avrami exponent (n value) decreased with adding the compatible high-methoxyl pectin and the partial compatible guar gum. It indicates that the growth of recrystallization changes from the disc-like to the rod-like pattern. Whereas, no change was found with adding the incompatible low-methoxyl pectin. At the second stage, the added gums showed no effect on n values. As n value was fixed to 1, the rate constant (k value) at the first stage decreased for the samples with adding high-methoxyl pectin and guar gums, and showed no change for that with adding low-methoxyl pectin. On the other hand, k values at the second stage were not influenced by adding high-methoxyl pectin and guar gums, but were increased with adding low-methoxyl pectin.
論文目次第一章 緒 言 1 第二章 文獻回顧 3 一、澱粉之結構與特性 3 (一)澱粉之結構 3 (二)澱粉之物化特性 6 1. 澱粉之糊化及影響因子 6 2. 澱粉之回凝 7 3. 澱粉回凝之影響因子 8 二、澱粉與其他食品成分的交互作用 14 (一)澱粉與食品小分子之交互作用 14 (二)澱粉與食品大分子之交互作用 15 1. 食用膠對澱粉糊化和溶液黏稠度之影響 15 2. 食用膠對澱粉凝膠和回凝性質之影響 23 3. 澱粉與食品成份之相容性對澱粉物化性質之影響 29 三、食品成分的玻璃轉化及相容性 36 (一)食品成分之玻璃轉化現象 36 (二)玻璃轉化溫度之影響因子 40 1. 塑化劑 40 2. 結晶度 46 3. 測量方法 46 4. 其他影響因子 49 (三)食品成份間的相容性對玻璃轉化溫度之影響 49 (四)多醣類之sub-Tg吸熱現象 54 第三章 材料與方法 59 一、實驗材料 59 二、實驗方法 59 (一)米澱粉之萃取及去脂 59 (二)成份分析 59 (三)TCN1-食用膠混合物的製備 60 1. 米澱粉、食用膠及其混合乾燥樣品之製備 60 2. 米澱粉、食用膠及其混合膠之製備 60 (四)示差掃描熱分析 61 (五)動態機械分析 61 (六)米澱粉回凝動力學研究 61 (七)統計分析 62 第四章 結果與討論 63 一、基本成分分析 63 二、澱粉與食用膠之相容性 63 (一)示差掃描熱分析 63 (二)動態機械分析 75 三、食用膠對TCN1澱粉回凝之影響 80 (一)示差掃描熱分析 80 (二)TCN1澱粉回凝動力學 88 第五章 結 論 93 參考文獻 95
參考文獻林珍宇、陳炯堂。1995。貯存條件對鹼處理麵筋蛋白宇糊化玉米澱粉相容性之影響。中國農業化學會誌。33: 65-76。 陳仁威。1999。以玻璃轉化溫度探討高直鏈玉米澱粉與活性麵筋之相容性。輔仁大學食品營養研究所碩士論文。 陳炯堂。1993。蛋白質與多醣類之不相容性。食品科學。20: 9-20。 楊啟春、賴惠民、呂政義。1984。米穀粉分離方法之改進。食品科學。14: 158-170。 戴瑞岑、陳仁威、賴玉琪、白雅瑜、陳?堂。1997。米澱粉-月桂醇複合物之熱性質及回凝動力學。食品科學。24: 32-43。 Alloncle, M. and Doublier; J. L. 1991. Viscoelastic properties of maize starch/hydrocolloid pastes and gels. Food Hydrocoll. 5: 455-467. Alloncle, M., Lefebvre, J., Llamas, G. and Doublier, J. L. 1989. A rheological characterization of cereal starch-galatomannan mixtures. Cereal Chem. 66: 90-93. AOAC. 1984. Offical Methods of Analysis. 14th Ed. Assoc. Offic. Anal. Chemists. Washington, DC. Appelqvist, I. A. M., Cooke, D., Gidley, M. J., and Lane, S. J. 1993. Thermal properties of polysaccharides at low moistures: 1-an endothermic melting process and water-carbohydrate interactions. Carbohydr. Polym. 20: 291-299. Arvanitoyannis, I. and Biliaderis, C. G. 1998. Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chem. 62: 333-342. Arvanitoyannis, I., Psomoadou, E., Nakayama, A., Aiba, S., and Yamamoto, N. 1997. Edible films made from gelatin, soluble starch and polyols, Part 3. Food Chem. 60: 593-604. Avrami, M. 1940. Kinetics of phase change. II. Transformation-time relation for random distribution of nuclei. J. Chem. Phys. 8: 212-224. Bader, H. G. and Goritz, D. 1994. Investigations on high amylose corn starch films. Part 3: stress strain behavior. Starch/Starke 46: 435-439. Bahnassey, Y. A. and Breene, W. M. 1994. Rapid visco-analyzer (RVA) pasting profiles of wheat, corn, waxy corn, tapioca, and amaranth starches (A. hypochondriacus and A. cruentus) in the presence of konjac flour, gellan, guar, xanthan and locust bean gums. Starch/ Starke 46: 134-141. Baik, M. Y., Kim, K. J., Cheon, K. C., Ha, Y. C., and Kim, W. S. 1997. Recrystallization kinetics and glass transition of rice starch gel system. J. Agric. Food Chem. 45: 4242-4248. Bean, M. M., Yamazaki, W. T., and Donelson, D. H. 1978. Wheat starch gelatinization in sugar solution. II. Fructose, glucose, and sucrose: Cake performance. Cereal Chem. 55: 945-952. Bello-Perez, L. A. and Paredes-Lopez, O. 1995. Effects of solutes on retrogradation of stored starches and amylopectins: a calorimeteric study. Starch/starke 47: 83-86. Biliaderis, C. G. and Prokopowich, D. J. 1994. Effect of polyhydroxy compounds on structure formation in waxy maize starch gels: a calorometric study. Carbohydr. Polym. 23: 193-202. Biliaderis, C. G., Page, C. M., Slade, L., and Sirett, R. R. 1985. Thermal behavior of amylose-lipid complexes. Carbohydr. Polym. 5: 367-389. Biliaderis, C. G., Thessaloniki, I. A., Izydorczyk, M. S., and Prokpowich, D. J. 1997. Effect of hydrocolloids on gelatinization and structure formation in concentrated waxy maize and wheat starch gels. Starch/Starke 49: 278-283. Bizot, H., Bail, P. L., Leroux, B., Davy, J., Roger, P., and Buleon, A. 1997. Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydr. Polym. 32: 33-50. Blanshard, J. M. V. 1986. The significance of the structure and function of the starch granule in baked products. Pages 1-13 in: Chemistry and Physics of Baking.. J.M.V. Blanshard, P.J. Frazier, and T. Galiard, (Ed). Royal Soc. of Chemistry, London, U.K. Brent, J. L. J., Mulvaneyt, S. J., Cohen, C., and Bartsch, J. A. 1997. Thermomechanical glass transition of extruded cereal melts. J. Cereal. Sci. 26: 301-312. Chien, J.T., Lien, Y.Y., and Shoemaker, C.F. 1999. Effect of polarity of complexing agents on thermal and rheological properties of rice starch gels. Cereal Chem. 76: 837-842. Christianson, D. D. 1982. Hydrocolloid interactions with starches. Pages 399-419 in: Food Carbohydrates. D. R. Lineback and G. E. Ingeltt, (Ed). Avi Publishing Company Inc: Westport, CT. Christianson, D. D., Hodge, J. E., Osborne, D., and Detroy, R. W. 1981. Gelatinization of wheat starch as modified by xanthan gum, guar gum,and cellulose gum. Cereal Chem. 58: 513-517. Chungcharoen, A. and Lund, D. B. 1987. Influence of solutes and water on rice starch gelatinization. Cereal Chem. 64: 240-243. Cura, J. A. Jansson, P. E., and Krisman, C. R. 1995. Amylose is not strictly linear. Starch/Starke 47: 207-209. Davidou, S., Le Meste, M., Debever, E., and Bekaert, D. 1996. A contribution to the study of staling of white bread: effect of water and hydrocolloid. Food Hydrocoll. 10: 375-383. Descamps, O., Langevin, P., and Combs, D. H. 1986. Physical effects of starch/carrageenan interactions in water and milk. Food Technol. 40: 81-88. Eidam, D. and Kulicke, W. M. 1995. Formation of maize starch gels selectively regulated by the addition of hydrocolloids. Starch/Starke 47: 378-384. Evans, I. D. 1986. An investigation of starch/surfactant interaction using viscosimetery and differential scanning calorimetery. Starch/Starke 38: 227-235. Ferrero, C., Martino, M. N., and Zaritzky, N. E. 1994. Corn starch-xanthan gum interaction and its effect on the stability during storage of frozen gelatinized suspensions. Starch/Starke 46: 300-308. Forssell, P. M., Mikkila, J. M., Moates, G. K., and Parker, R. 1997. Phase and glass transition behaviour of concentrated barley starch-glycerol-water mixtures, a model for thermoplastic starch. Carbohydr. Polym. 34: 275-282. French, D. 1984. Organization of starch granules. Pages 232-242 in: Starch: Chemistry and Technology. 2nd . ed. R. L. Whistler, J. N. Bemiller, and D.F. Paschall (Ed). Academic Press: New York. Germani, R., Ciacco, C. F., and Rodriguez-Amaya, D. B. 1983. Effect of sugars, lipids and type of starch on the mode and kinetics of retrogradation of concentrated corn starch gels. Starch/Starke 35: 377-381. Gidley, M.J., Cooke, D. and Ward-Smith, S. 1993. Low moisture polysaccharide system : thermal and spectroscopic aspects. In: The Glassy State in Foods. J.M.V. Blanshard, and P.J. Lillford (Ed.), Nottingham University Press: Loughborough, U.K. Goff, H. D., Caldwell, K. B., Stanley, D. W., and Maurice, T. J. 1993. The influence of polysaccharides on the glass transition in frozen sucrose solutions and ice cream. J. Dairy. Sci. 76: 1268-1277. Gudmundsson, M., Eliasson, A. C., Bengtsson, S., and Aman, P. 1991. The effect of water soluble arabinoxylan on gelatinization and retrogradation of starch. Starch/ Starke 43: 5-10. Hallberg, L.M. and Chinachoti, P. 1992. Dynamic mechanical analysis for glass transitions in long shelf-life bread. J. Food Sci. 57: 1201-1204, 1229. Hartley, L., Chevance, F., Hill, S. E., Mitchell. J. R., and Blanshard, J. M. V. 1995. Parititoning of water in binary biopolymer mixtures at low water content. Carbohydr. Polym. 28: 83-89. Hood, L. F. 1982. Current concepts of starch structure. Pages 217 in: Food carbohydrate. P. R. Linebachand G. E. Inglett. (Ed). AVI, Westport, connecticut. Horton, S. D., Lauer, G. N., and White, J. S. 1990. Predicting gelatinization temperature of starch/sweetener systems for cake formulation by differential scanning colarimetery. II. Evaluation and application of a model. Cereal Foods World 35: 734-739. Jang, J. K. and Pyun, Y. R. 1997. Effect of moisture level on the crystallinity of wheat starch aged at different temperatures. Starch /Starke 49: 272-277. Jankowski, T. and Rha, C. K. 1986. Retrogradation of starch in cooked wheat. Starch/Starke 38: 6-9. Jouppila, K., Kansikas, J., and Roos, Y. H. 1998. Factors affecting crystallization and crystallization kinetics in amorphous corn starch. Carbohydr. Polym. 36: 143-149. Juliano, B.O., Perez, C. M., Blankeney, A., Castillo, R., Kongseree, N., Laigmelet, B., Lapis, E. T., Murty, V. B. S., Paule, C. M. and Webb, B. D. 1981. International cooperative testing on the amylose content of milled rice. Starch/Starke 33: 157-162. Kaletunc, G. and Breslauer, K. 1993. Glass transition of extrudates: Relationship with processing-induced fragmentation and end-product attributes. Cereal Chem. 70: 548-552. Kalichevsky, M. T. and Blanshard, J. M. V. 1992. A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA. Carbohydr. Polym.19: 271-278. Kalichevsky, M. T. and Blanshard, J. M. V. 1993. The effect of fructose and water on the glass transition of amylopectin. Carbohydr. Polym. 20: 107-113. Kalichevsky, M. T., Jaroszkiewicz, E. M., Ablett, S., Blanshard, J. M. V., and Lillford, P. J. 1992. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polym. 18: 77-88. Kalichevsky, M. T., Orforf, P. D., and Ring, S. G. 1986. The incompatibility of Concentrated aqueous solution of dextran and amylose and its effect on amylose gelation. Carbohydr. Polym. 6: 145-154. Katsuta, K., Nishimura, A., and Miura, M. 1992a. Effects of saccharides on stabilities of rice starch gels. 1. Mono- and disaccharides. Food Hydrocoll. 6: 387-398. Katsuta, K., Nishimura, A., and Miura, M. 1992b. Effects of saccharides on stabilities of rice starch gels. 2. Oligosaccharides. Food Hydrocoll. 6: 399-408. Keetels, C. J. A. M., Vliet, T. V., and Luyten, H. 1994. Effect of retrogradation on the structure and mechanics of concentrated starch gels.Pages 472-479 in: Food Macromolecules and colloids. E. Dickinson and D. Lorient (Ed.),. Royal Soc. of Chem., Inc., London, U. K. Keetles, C. J. A. M., Vliet, T. V. and Walstra, P. 1996. Gelation and retrogratation of concentrated starch system: 2. Retrogratation. Food Hydrocoll. 10: 355-362. Kim, S. K. and D’Appolonia, B. L. 1977a. Effect of pentosans on the retrogradation of wheat starch gels. Cereal Chem. 54: 150-160. Kim, S. K. and D’Appolonia, B. L. 1977b. Bread staling studies. II. Effect of protein content and storage temperature on the role of starch. Cereal Chem. 54: 216-224. Kohyama, K. and Nishinari, K. 1992. Cellulose derivatives effects on gelatinization and retrogradation of sweet potato starch. J. Food Sci. 57: 128-132, 137. Koseki, M., Kitabatake, N., Doi, E., Yasuno, T., Ogino, S., Kazama, M., and Doguchi, M. 1987. Binding of Taurocholate by pectin in the present of calcium ions. J. Food Sci. 52: 1744-1745. Krog, N. and Brabrand, M. 1971. Amylose complexing effect of food grade emulsifiers. Starch/Starke 23: 206-210. Krog, N., Olesen, S. K., Toernaes, H., and Joensson, T. 1989. Retrogradation of the starch fraction in wheat bread. Cereal Foods World 34: 281-285. Kulicke, W. M., Ediam, D., Kath, F., Kix, M., and Kull, A. H. 1996. Hydrocolloids and rheology: regulation of visco-elastic characterics of waxy rice starch in mixtures with galactomannans. Starch/Starke 48: 105-114. Lagendijk, J. and Pennings, H. J. 1970. Relation between complex formation of starch with monoglycerides and firmness of bread. Cereal Sci. Today 15: 354-356, 365. Lai, V. M. F., Lu, S., and Lii, C. Y. 1999. Effect of molecular structure on the retrogradation kinetics of rice starch amylopectins. 84th Annual Meeting of AACC. Lai, Y. C., Chien, J. T., and Sung, P. H. 2000. Evaluation of compatibility of rice starch and pectins by Tg and sub-Tg endotherms and the effect of compatibility on gel viscosity and water loss. Accepted by Cereal Chem. Lang, K. W. and Steinberg, M. P. 1980. Calculation of moisture content of a formulated food system to any given water activity. J. Food. Sci. 45: 1228-1230. Lim, S. T. and Jane, J. 1996. Plasticizing effect of methyl glucoside on starch at limited moisture contents. Starch/Starke. 48: 444-448. Liu, H., Arntfield, S.D., Holley, R.A. and Aime, D.B. 1997. Amylose-lipid complex formation in acetylated pea starch-lipid systems. Cereal Chem. 74: 159-162. Martin, M. L. and Hoseney, R. C. 1991. A mechanism of bread firming. II. Role of starch hydrolyzing enzymes. Cereal Chem. 68: 503-507. Mikus, F. F., Hixon, R. M., and Rundle, R. E. 1946. The complexes of fatty acids with amylose. J. Am. Chem. Soc. 68: 1115-1123. Miles, M. J., Morris, V. J., Orford, P. D., and Ring, S. G. 1985. The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydr. Res. 135: 271-281. Miller, B. S., Derby, R. I., and Trumbo, H. B. 1973. A pictorial explanation for the increase in viscosity of a heated wheat-starch-water suspension. Cereal Chem. 50: 271-280. Mita, T. 1992. Structure of potato starch pastes in the aging process by the measurement of their dynamic moduli. Carbohydr. Polym. 17: 269-276. Mitsuiki, M., Yamamoto, Y., Mizuno, A., and Motoki, M. 1998. Glass transition properties as a function of water content for various low-moisture galactans. J. Agric. Food Chem. 46: 3528-3534. Morris, V. J. 1990. Starch gelation and retrogradation. Trends in Food Sci and Technol. 1: 2-6. Mua, J. P. and Jackson, D. S. 1998. Retrogradation and gel textural attributes of corn starch amylose and amylopectin fractions. J. Cereal Sci. 27: 157-166. Nielsen, L.E. 1974. Dynamic mechanical properties. Pages 139-235 in: Mechenical Properties of Polymers and Composites. Marcel Dekker: New York. Pearce, L. E., Davis, E. A., Gordon, J., and Miller, W. G. 1987. Stearic acid-starch interactions as measured by electron spin resonance. Cereal Chem. 64: 154-157. Rao, M. A. and Cooley, H. J. 1993. Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. J. Food Sci. 58: 876-879. Ring, S. G. 1985. Some studies on starch gelation. Starch/Starke 37: 80-83. Robin, J. P., Mercier, C., Charbonniere, R., and Guilbot, A. 1974. Lintnerized starches. Gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51: 389-406. Rojas, J. A., Rosell, C. M., and Barber, C. B. D. 1999. Pasting properties of different wheat flour-hydrocolloid system. Food Hydrocoll. 13: 27-33. Roos, Y. and Karel, M. 1991. Water and molecular weight effects on glass transition in amorphous carbohydrates and carbohydrate solutions. J. Food Sci. 75: 775-777. Roos, Y. H. 1987. Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry. J. Food Sci. 52: 146-149. Roos, Y. H. 1995. Glass transition-related physicochemical change in foods. Food Technol. 49 (10): 97-102. Roulet, P. H., Maclnnes, W. M., Gumy, D., and Wursch, P. 1990. Retrogradation kinetics of eight starches. Starch/Starke 42: 99-101. Russell, P. L. 1983. A kinetic study of bread staling by differential scanning calorimetery and compressibility measurements: The effect of added monoglyceride. J. Cereal Sci. 1: 297-303. Russell, P. L. and Oliver, G. 1989. The effect of pH and NaCl content on starch gel aging. A study by differential scanning colarimetery and rheology. J. Cereal Sci. 10: 123-138. Sajjan, S. U. and Rao, M. R. R. 1987. Effect of hydrocolloids on the rheological properties of wheat starch. Carbohydr. Polym. 7: 395-402. SAS Institute Inc. 1990. SAS Procedures and SAS/Graph User’s Guide. Version 6. Software Release 6.11 for Windows. SAS Institude: Cary. NC U.S.A. Schoch, T. J. 1942. Non-carbohydrate substances in the cereal starches. J. Am. Chem. Soc. 64: 2954-2961. Seow, C. C. and Teo, C. H. 1996. Staling of starch-based products: A comparative study by firmness and pulsed NMR measurements. Starch/Starke 48: 90-93. Shogren, R. L. 1992. Effect of moisture content on the melting and subsequent physical aging of cornstarch. Carbohydr. Polym. 19: 83-90. Shogren, R. L. 1996. Preparation, thermal properties, and extrusion of high-amylose starch acetates. Carbohydr. Polym. 29: 57-62. Slade, L. and Levine, H. 1994. Advances in Food and Nutrition Research. J.E. kinsella, Academic Press, San Diego. Slade, L. and Levine, H. 1991. Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30: 115-360. Silva, J. A. L. D. and Rao, M. A. 1995. Rheology of structure development in high-methoxyl pectin/sugar systems. Food Technol. 49: 70-73. Sudhakar, V., Sinhal, R. S., and Kulkarni, P. R. 1992. Starch-gum interactions: formations and functionality using amaranth/corn starch and CMC. Starch/Starke 44: 369-374. Sudhakar, V., Singhal, R. S., and Kulkarni, P. R. 1995. Studies on starch-hydrocolloid interactions: effect on salts. Food Chem. 53: 405-408. Sudhakar, V., Singhal, R. S., and Kulkarni, P. R. 1996. Starch-galactomannan interactions: functionality and rheological aspects. Food Chem. 55: 259-264. Ten Brinke, G., Karasz, F. E., and Ellis, T. S. 1983. Depression of glass transition temperature of polymer networks by diluents. Macromolecules 16: 244-249. Thiewes, H. J. and Steeneken, P. A. M. 1997. The glass transition and the sub-Tg endothrem of amorphous and native potato starch at low moisture content. Carbohydr. Polym. 32: 123-130. Tolstoguzov, V. B. 1991. Functional properties of food protein and role of protein-polysaccharide interaction. Food Hydrocoll. 4: 429-468. Voragen, A.G. J., Schols, H. A., and Pilnik, W. 1986. Determination of the degree of methylation and acetylation pectin by HPLC. Food Hydrocoll. 1: 65-69. Wetton, R.E. 1986. Dynamic mechanical thermal analysis of polymers and related system. Pages 179-222 in: Developments in Polymer Characterization. J.V. Dawkins ed. Elsevier Applied Science: New York. Wunderlich, B. 1997. The basis of thermal analysis. Pages 205-482 in Thermal Characterization of Polymeric Materials, Vol. 1, 2nd. ed. E. A. Turi, (Ed). Academic Press: New York. Yoshimura, M., Takaya, T., and Nishinari, K. 1996. Effect of konjac-glucomannan on the gelatinization and retrogradation of corn starch as determined by rheology and differential scanning calorimetry. J. Agric. Food Chem. 44: 2970-2976. Yoshimura, M., Takaya, T., and Nishinari, K. 1998. Rheological studies on the mixtures of corn starch and konjac-glucomannan. Carbohydr. Polym. 35: 71-79. Yoshimura, M., Takaya, T., and Nishinari, K. 1999. Effect of xyloglucan on the gelatinization and retrogradation of corn starch as studied by rheology and differential scanning calorimetry. Food Hydrocoll. 13: 101-111. Yuan, R. C. and Thompson, D. B. 1994. Sub-Tg thermal properties of amorphous waxy starch and its derivaties. Carbohydr. Polym. 26: 43-46. Yuryev, V. P., Nemirovskaya, I. E., and Maslova, T. D. 1995. Phase state of starch gels at different water contents. Carbohydr. Polym. 26: 43 -46. Zeleznak, K. J. and Hoseney, R. C. 1986. The role of water in the retrogradation of wheat starch gels and bread crumb. Cereal Chem. 63: 407-411. Zeleznak, K. J. and Hoseney, R. C. 1987. The glass transition in starch. Cereal Chem. 64:121-124. Zhang, W. and Jackson, D. S. 1992. Retrogradation behavior of wheat starch gels with differing molecular profiles. J. Food. Sci. 57: 1428-1432.
論文頁數108
附註
全文點閱次數
資料建置時間
轉檔日期
全文檔存取記錄
異動記錄M admin Y2008.M7.D3 23:17 61.59.161.35