輔仁大學
學術資源網

記錄編號5371
狀態NC093FJU00058001
助教查核
索書號
學校名稱輔仁大學
系所名稱公共衛生學系
舊系所名稱
學號492926050
研究生(中)李賢致
研究生(英)Lee Shien Chih
論文名稱(中)微環境微粒空氣污染物對氣喘學童尖峰吐氣流量率之影響
論文名稱(英)Effect of Microenvironmental Particulate Matter on Peak Expiratory Flow Rate of Asthmatic Children
其他題名
指導教授(中)唐進勝 張立德
指導教授(英)Tang Chin Sheng Chang Li Te
校內全文開放日期
校外全文開放日期
全文不開放理由
電子全文送交國圖.
國圖全文開放日期.
檔案說明
電子全文
學位類別碩士
畢業學年度94
出版年
語文別中文
關鍵字(中)微粒空氣污染物、微環境暴露、氣喘學童、尖峰吐氣流量率、延遲效應、累積效應 微環境 相關性 差異性 流量率 分析儀
關鍵字(英)articulate matter, asthmatic children, peak expiratory flow rate, microenvironmental exposures, lag effect, cumulative effect before data
摘要(中)摘要 目的:許多的小組研究指出氣喘學童的健康狀態和微粒(particulate matter, PM)空氣污染物濃度有密切的相關,但此類研究多數應用空氣品質測站監測所得的PM以及其他污染物質資料,用以評估易感受族群的健康效應,然而利用此類資料可能造成錯誤的暴露推估,導致無法正確的評估PM暴露與健康效應之相關,且目前文獻對於細粒徑(PM2.5)和粗粒徑(PM2.5-10)微粒對氣喘學童肺功能指標之一的尖峰吐氣流量率(peak expiratory flow rate, PEFR)之影響也尚未有一致性的定論,本研究目的在於瞭解微環境中不同粒徑與不同時序的微粒暴露對氣喘學童PEFR下降的影響。 方法:本研究利用可攜式微粒分析儀(GRIMM 1.108 , Germany)針對新莊市新泰國小 30 名氣喘學童進行微環境的微粒暴露(PM10、PM2.5、PM1)監測,並使用PF-100(Microlife , Taiwan)測量學童每日早晚的PEFR變化,另利用活動日誌紀錄氣喘學童各種微環境的活動以求精確的評估微粒暴露量,再以線性混合因子模型進行不同時序與不同粒徑之微粒暴露濃度和PEFR之相關分析,本研究以PEFR測定時間的前24小時(Lag 0)、前24至48小時(Lag 1)、前48至72小時(Lag 2)的PM平均濃度來觀察對PEFR的延遲效應,以Lag 0、前兩天(2 day mean)、前三天(3 day mean)的PM平均濃度來觀察對PEFR的累積效應,並同時應用超級測站之微粒空氣品質資料來比較與微環境微粒暴露對評估PEFR的差異性。 結果:本研究調查的氣喘學童族群其微環境PM暴露平均濃度(PM10 = 51.9 μg/m3、PM2.5-10 = 17.9 μg/m3、PM2.5 = 34.0 μg/m3)均高於超級測站之PM平均濃度(PM10 = 48.4 μg/m3、PM2.5-10 = 17.0 μg/m3、PM2.5 = 31.4 μg/m3)。經線性混合因子模型分析之結果雖未達統計上之顯著但可觀察到下列趨勢:不同粒徑之PM 暴露對早上的 PEFR下降的延遲效應(Lag 0、Lag 1、Lag 2)皆以粗粒徑(PM2.5-10)的影響較大,粗細粒徑的累積效應差異則無規律;不同時序之PM暴露對早上 PEFR的延遲效應中, PM1 與PM1-2.5皆以Lag 2的影響較大;累積效應則以2 day mean 影響較大。PM對晚上PEFR的延遲效應與累積效應僅觀察到粗粒徑(PM2.5-10)之Lag 0影響,其它粒徑與時序之影響則較無規律。另外,研究結果中顯示氣喘學童PEFR監測之微環境PM暴露與相同時序之超級測站PM數據的皮爾森相關係數(Pearson's coefficient)顯示細粒徑微粒的相關性較粗粒徑佳(PM 2.5 > PM2.5-10),而從線性混合因子模型的模擬程度比較中,顯示微環境 PM 監測較能評估學童的PEFR變化。 結論:本研究調查中的新泰國小氣喘學童族群,微環境暴露監測資料各粒徑 PM 平均濃度均高於超級測站PM平均濃度,且微環境中PM暴露的濃度變化較大,顯示氣喘學童PM暴露明顯高於超級測站監測資料。另外,不同粒徑與不同時序的PM暴露對氣喘學童PEFR下降的延遲效應與累積效應未達統計上的顯著,僅有部分的趨勢出現。與超級測站PM資料相較,微環境監測資料較能評估學童的PEFR變化。 關鍵字:微粒空氣污染物、微環境暴露、氣喘學童、尖峰吐氣流量率、延遲效應、累積效應
摘要(英)Abstract Objective: Many panel studies have indicated the relationship between the concentrations of particulate matter (PM) and the health status of children with asthma. Most of the studies used PM (or other air pollutants) data obtained from the ambient air monitoring sites to access the health effects for susceptible groups, while the data gathered from the ambient sites might introduce certain statistical errors or biases. As a result, it is difficult to estimate the relation between PM exposures and health effect. Currently, results of previous studies have been inconsistent with the effects of fine particle (PM2.5) and coarse particle (PM2.5-10) on the peak expiratory flow rate (PEFR) for asthmatic children. Therefore, we conducted the research to achieve further understanding of the effects of different PM diameters and time frames on the peak expiratory flow rate for asthmatic children. Method: In this study, we recruited 30 asthmatic children form SinTai Elementary School, SinChuang City, and used a portable particle monitor (GRIMM 1.108, Germany) to measure their microenvironmental particle exposures (PM10, PM2.5, and PM1). Subjects’ PEFR data were obtained using PF-100 (Microlife, Taiwan) twice a day in both of the morning and the evening. In order to estimate the actual PM exposures in different microenvironments, activity data were also recorded via time-activity diary. Linear mixed-effect model was used to analyze the association between PM exposures and peak expiratory flow rate in different time frames and different diameters. In the study, lag effects of PM concentrations on PEFR were observed by different time frames, including 24-hour PM concentrations before the PEFR tests (Lag 0), 24-hour to 48-hour PM concentrations before the PEFR tests (Lag 1), 48-hour to 72-hour PM concentrations before the PEFR tests (Lag 2), 2-day cumulative PM concentrations before the PEFR tests (2-day mean), and 3-day cumulative PM concentrations before the PEFR tests (3-day mean). In addition to microenvironmental PM exposures, PM concentrations measured at the particle Supersite were also applied in the analysis to evaluate the PM effects on the PEFR changes. Results: The mean microenvironmental concentrations of each PM size for asthmatic children (PM10 = 51.9 ?g/m3, PM2.5-10 = 17.9 ?g/m3, and PM2.5 = 34.0 ?g/m3) were significantly higher than the corresponding concentrations gathered from the Supersite (PM10 = 48.4 ?g/m3, PM2.5-10 = 17.0 ?g/m3, PM2.5 = 31.4 ?g/m3). Although results obtained from the linear mixed-effect model analysis were not statistically significant, several relationship trends were observed. For example, PM2.5-10 levels showed greater lag effects (Lag 0, Lag 1, and Lag 2) on the morning PEFR, while no apparent trends were found for the cumulative effects of coarse particle and fine particle. Furthermore, PM1 and PM2.5 had stronger lag effect of Lag 2 on the morning PEFR. PM2.5-10 was the only size of particles shown effects (lag and cumulative effects) on evening PEFR. Lastly, stronger Pearson’s coefficients were found for the association between microenvironmental exposures and Supersite ambient levels for fine particles, as compared to those for coarse particles. Results of the linear mixed-effect model also suggested microenvironmental PM data were better fit for children’s PEFR change assessment. Conclusion: In this study, asthmatic children’s averaged microenvironmental PM exposures were significantly higher than the corresponding ambient PM concentrations measured at the Supersite. Stronger variability was found for microenvironmental PM exposures as compared to the corresponding ambient levels. Although no statistically significant trends were shown between PM exposures and asthmatic children’s PEFR decreases, some relationship trends were observed. Finally, compared to the Supersite, the PM data monitored in different microenvironments were better fit for children’s PEFR change assessment. Key words: particulate matter, asthmatic children, peak expiratory flow rate, microenvironmental exposures, lag effect, cumulative effect
論文目次目錄 第一章 前言…………………………………………………..……………………1 1.1 研究背景……….……….………………………………..………………1 1.2 研究目的……………….…….…………………………..………………2 第二章 文獻探討………….…………………………………..…….……. ………3 2.1 微粒空氣污染物定義與來源………….……………………...…………3 2.2 台灣微粒空氣污染現況…………………………………..…….…………4 2.3 氣喘定義與危險因子…………………………………..……….…………5 2.4 微粒空氣污染物暴露對氣喘學童的肺功能影響………….……………..6 第三章 材料與方法………………………………………………………………10 3.1 實驗設計………………………………………….………………………10 3.2 研究對象………………………………………………….………………12 3.3 微環境微粒空氣污染物暴露評估……….…………….…..…….………12 3.3.1 採樣儀器與方法…………………………………….…….………12 3.3.2 儀器原理…………………………………………….……….……13 3.3.3 品保與品管………………………………………….……….……14 3.4 級測站微粒空氣污染物監測……………………………….……………15 3.5 尖峰吐氣流量率測量………………………………………….…………16 3.5.1 測量儀器與方法……………………………….……….…………16 3.5.2 資料處理…………………………………………………..………17 3.6 干擾因子調查………………………………………………….…………17 3.6.1 問卷調查………………………………………………..…………17 3.6.2 活動日誌記錄……………………………………….….…………17 3.6.3 居家環境調查…………………….…………………….…………18 3.7 統計分析…………………………………………………….……………18 第四章 結果與討論………………………………………………………………21 4.1 個案基本統計資料…………………………………………….…………21 4.2 微環境與超級測站微粒監測資料…………………………….…………22 4.3 尖峰吐氣流量率測定值……………………………..…………...………22 4.4 微環境與超級測站之同時序的PM暴露統計資料………………..……23 4.5 微環境粒暴露資料與PEFR相關分析………………………………..…24 4.6 超級測站微粒監測資料與PEFR相關分析…………………….….……28 4.7 微環境與超級測站PM資料相關分析………………………….………32 第五章 結論與建議………………………………………………..……..………35 附錄一………………………………….…………….……………..…………84 附錄二…………………………………………….…….…………..…………86 附錄三………………………………….…………..…………………….……90 附錄四………………………………………………..………………..………92 附錄五……………………………………………….…………………..……94 參考文獻…………………………………………………………………….……95
參考文獻參考文獻 1. Mortality and morbidity during the London fog of December 1952.Her Majesty’s Stationary Office, London. Report No. 95 on Public Health and Medical subjects. London, UK:Her Majesty’s Public Health Service;1954. 2. Seaton A., MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet 1995;8943:176 - 178. 3. Delfino RJ, Zeiger RS, Seltzer JM, Street DH. Symptoms in pediatric asthmatics and air pollution:14 differences in effects by symptom severity, anti-inflammatory medication use and particulate averaging time. Environ. Health Perspect. 1998;106:751-761. 4. Chen LM, Burnett RT, Villeneuve PJ, Krewski D, The influence of ambient coarse particulate matter on asthma hospitalization in children. Environ. Health Perspect 2002;110;578-581 5. Gielen MH, Zee VD, Wijnen V, SteenV, Brunekreef B,.Acute effects of 22 summer air pollution on respiratory health of asthmatic children. Am. J. Respir. Crit. Care Med 1997;23 155:2105-2108. 6. Friedlander, S. K. Smoke, dust and haze: fundamentals of aerosol dynamics. 2nd ed. Oxford University Press. 2000. 7. Parker CR. Aero science and technology 2nd. Mcgraw Hill Press. 2001 8. American Conference of Governmental Industrial Hygienists. 1994-1995 threshold limit values for chemical 18 substances and physical agents and biological exposure indices. Cincinnati 1994. 9. Wilson WE, Suh HH. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J. Air Waste Manage. Assoc 1997;47: 1238 - 1249. 10. 九十三年度中華民國台灣地區環境保護統計年報 行政院環保署。 11. United States Environmental Protection Agency. Air quality index a guide to air quality and your health. EPA-454/K-03-002 2003. 12. 梁永志、李崇德 台北地區背景測站懸浮為成分特徵受大陸沙塵影響之研究 國立中央大學環境工程學刊2003。 13. 行政院環保署 大陸沙塵對我國之影響。 http://taqm.epa.gov.tw/emc/default.aspx?pid=b0301&cid=b0301 14. Global Strategy for Asthma Management and Prevention. NIH Publication 2002. 15. Tang FC, Chen PC, Chan CC, Yau KI, Wang JD. Predictive pulmonary function of school children in an area of low air pollution in Taiwan. J Forms Med Assoc 1997;96:397 - 404. 16. Gissler M, Jarvelin MR, Louhiala P, Hemminki E. Boys have more health problems in childhood than girls: follow-up of the 1987 Finnish birth cohort. ActaPaediatr 1999;88:310 - 4. 17. Lee YL, Lin YC, Hsiue TR, HwangBF, Guo YL. Indoor and outdoor environmental exposure, parental atopic and physician-diagnosed asthma in Taiwanese school children. Pediatrics 2003;112:389 - 395. 18. Asturias JA, Gomez-Bayon N, Arilla MC, Martinez A,Palacios R, Sanchez-Gascon F, et al. Molecular characterization of American cockroach tropomyosin, a cross-reactive allergen. J Immunol 1999;162:4342 - 8. 19. Huang JL, Chen CC, Kuo ML, Hsieh KH. Exposure to higher concentration of mite allergen in early infancy is a risk factor for developing atopic dermatitis - a 3-year follow-up study. Pediatr Allergy Immunol 2001;12:11 - 6. 20. Ferrence R, Ashley MJ. Protecting children from passive smoking. BMJ 2000;321:310 - 1. 21. Dockery DW, Pope CA. Acute respiratory effects of air particulate pollution. Annu .Rev Public Health1994;15:107 - 132. 22. Schwartz J. Air Pollution and Children’s Health. Pediatrics 2004;113:1037 - 1043. 23. US Environmental Protection Agency, National Center for Exposure Assessment. Exposure Factors Handbook. Washington, DC:Environmental Protection Agency;1997 . 24. Jones NC, Thornton CA , Mark D. Harrison RM. Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations Atmospheric Environment 2000;34:2603 - 2612. 25. Hsiek KH, Shen JJ. Prevalence of childhood asthma in Taipei, Taiwan and other Asian Pacific countries. J Asthma 1998;25:73 - 82. 26. Yang CY, Wang JD, Chan CC, Wang JS, Chen PC. Respiratory symptoms of primary school children living in a petrochemical polluted area in Taiwan. Pediatric Pulmonology 1998;25:299 - 303. 27. Kuo HW, Lai JS, Lee MC, Tai RC, Lee MC, Respiratory effects of air pollutants among asthmatics in Central Taiwan. Archives of Environmental Health 2002;57:194 - 200. 28. Boezen M, Saskia C , Zee VDr, Dirkje SP, Vonk MJ, Gerritsen J, Hoek G, Rijcken B, Schouten JP. Effects of ambient air pollution on upper and lower respiratory symptoms and peak expiratory flow in children. Lancet 1999;353:874 - 878. 29. Peters A, Dockery DW, Heinrich J, Wichmann HE. Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. Eur Respir. J 1997a;10:872 - 876. 30. Delfino RJ, Quintana JE, Floro J, Gastanaga VM, Samimi BS, Kleinman MT, Liu JS, Wu CF, Mclaren CE. Association of FEV1 in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environmental Health Perspectives 2004;112:932 - 941. 31. Portable Dust Monitors and Aerosolspectrometers manual Grimm Aerosol Technik Co, Inc. http://www.grimm-aerosol.de/html/en/products/occupational-1104-verkehr.htm 32. 唐進勝、張立德 台北縣環保局研究計畫期末報告 台北縣微粒空氣污染物對居民健康影響之研究 2004。 33. 林姵吟、溫志雄、李崇德 大氣氣膠特性連續即時監測 國立中央大學環境工程學刊2003。 34. TEOM series 1400a ambient particulate monitor operating manual. Rupprecht & Patashnick Co, Inc. http://www.rpco.com/products/ambprod/amb1400/ 35. Llewellin P, Sawyer G, Lewis S, Cheng S, Weatherall M, Fitzharris P, Beasley R. The relationship between FEV1 and PEF in the assessment of the severity of airways obstruction. Respirology 2002;7:333 - 337 36. Lee JT, Shy CM. Respiratory function as measured by peak expiratory flow rate and PM10 six communities study. Journal of Exposure Analysis and Environmenttal Epidemology 1999;9:293 - 299. 37. 陳南廷. 大氣懸浮微粒對易感受族群心跳速率變異性之影響. 台灣大學職業醫學與工業衛生研究所碩士論文,2003 38. 吳宗?. 中部地區郵務人員空氣污染物臭氧及揮發性有機物暴露及健康效應評估. 台灣大學職業醫學與工業衛生研究所碩士論文,2002 39. Luke PN, Theodore RH, Willian SB, Katgleen B, Brian PL Healthy women’s PEF variation with ambient summer concentrations of PM10、PM2.5、SO2 and O3. American Journal of Respiratory and Critical Care Medicine 1999;160:117 - 125. 40. Keeler CJ, Dvonch JT, Fuyuen Y, Parker EA, Israel BA, Marsik FJ, Morishita M, Barres JA, Robins TG, Wilma BC, Sam M. Assessment of personal and community-level exposure to particulate matter amoung children with asthma in Detroit, Michigan, as part of community action against asthma. Environmental Health Perspectives 2002;110:173 - 181 41. Liu JS, Michael B, Kalman D, Kaufman J, Koenig J, Larson T, Lumley T, Sheppard L, Wallace L. Exposure assessment of particulate matter for susceptible population in seattle. Environmental Health Perspectives 2003;111:909 - 918 42. Romieu I, Meneses F, Ruiz S, Huerta J, Sienra J J, White M, Etzel R, Hernandez M. Effects of 29 intermittent ozone exposure on peak expiratory flow and respiratory symptoms among asthmatic children in 30 Mexico City. Arch. Environ. Health 1997;52:368 - 376. 43. Peters A, Dockery DW, Heinrich J, Wichmann HE. Short-term effects of particulate air pollution on 9 respiratory morbidity in asthmatic children. Eur. Respir. J 1997b;10:872 - 879. 44. Chen PC, Lia YM, Chan CC, Hwang JS, Yang JD. Short-term effect of ozone on the pulmonary function of children in primary school. Environmental Health Perspectives.1999:107 921-925. 45. Guo YL, Lin YC, Sung FC, Huang SL, Lai JS, Su HJ, Shaw CK, Lin RS, Dockery DW. Climate, traffic-relate air pollutants, and asthma prevalence in middle-school children in Taiwan. Environmental Health Perspectives.1999;107:1001 - 1006.
論文頁數98
附註
全文點閱次數
資料建置時間
轉檔日期
全文檔存取記錄
異動記錄M admin Y2008.M7.D3 23:17 61.59.161.35