輔仁大學
學術資源網

記錄編號6250
狀態NC094FJU00058018
助教查核
索書號
學校名稱輔仁大學
系所名稱公共衛生學系
舊系所名稱
學號493926100
研究生(中)黃彥淵
研究生(英)Yan-Yuan Huang
論文名稱(中)高壓輸電線密度與兒童癌症發生率之流行病學研究
論文名稱(英)An Epidemiological Investigation on High-Voltage Transmission Line Density and the Incidence of Childhood Cancer.
其他題名
指導教授(中)李中一
指導教授(英)Chung-Yi Li
校內全文開放日期不公開
校外全文開放日期不公開
全文不開放理由
電子全文送交國圖.同意
國圖全文開放日期.2008.07.25
檔案說明電子全文
電子全文01
學位類別碩士
畢業學年度94
出版年
語文別中文
關鍵字(中)小兒白血病 地理資訊系統 極低頻磁場 流行病學 發生率 波以松迴歸 相對危險性
關鍵字(英)childhood leukemia geographic information system extremely-low-frequency magnetic field epidemiology incidence rate Poisson regression relative risk
摘要(中)背景與目的:西元2001年6月,聯合國世界衛生組織所屬國際癌症研究總署綜合流行病學研究與動物實驗之科學研究證據,在研究報告中指出:對於15歲以下兒童的白血病而言,4毫高斯(mili–Gauss;mG)以上的極低頻磁場暴露是一個可能的致癌物質。進行環境極低頻磁場的暴露評估雖然可以利用儀器進行直接量測,但因為使用大量儀器所需成本過高以及儀器無法進行較長時間之連續量測,因此許多流行病學研究會利用一些間接測量的方法進行環境評估。本研究嘗試利用地理資訊系統估計台灣地區各鄉鎮市區高壓輸電線密度,並結合台灣地區癌症發生登記檔,探討環境極低頻磁場暴露與15歲以下兒童癌症發生率之相關性。 材料與方法:本研究利用2002年版地理資訊系統分析評估台灣地區359個鄉鎮市區範圍內高壓輸電線密度,計算各鄉鎮市區鄰近高壓輸電線兩側100公尺範圍區域佔總面積之百分比,並將此百分比按四分位數區分為高、中、低與極低四個暴露等級進行比較;此外,本研究也比較居住於暴露面積≧90百分位數與居住於未有暴露面積之研究對象其癌症發生率之差異;以及比較兒童居住於境內有國民中小學校園遭高壓輸電線跨越之鄉鎮市區,與未有此暴露狀況兒童之癌症發生率。小兒癌症發生資料則是擷取自1991–1997年之癌症登記資料,其中0–14歲全癌症與小兒白血病之個案數分別有3,684與1,122人;統計方法為,以台灣整體發生率為參考,計算暴露鄉鎮市區之年代、年齡及性別標準化發生比,以及利用波以松迴歸模式控制年齡、性別、年代別及都市化程度後計算暴露鄉鎮市區之小兒癌症相對危險性。 結果:高暴露組(≧75th百分位數)、中暴露組(≧50th?<75th百分位數)及低暴露組(>25th?<50th百分位數)兒童無論在全癌症及小兒白血病部份之標準化發生比,都較極低暴露組(≦25th百分位數)略高;而以複迴歸分析控制年代、性別、年齡及都市化程度等干擾因子後,在全癌症部份,高暴露組、中暴露組及低暴露組發生全癌症的危險性皆高於極低暴露組,調整後的發生率比(rate ratio;RR)分別為1.11(95%CI=0.97–1.26)、1.10(95%CI=0.96–1.25)及1.03(95%CI=0.89–1.18),但均未達到統計上之顯著差異;在小兒白血病的部分,高暴露組、中暴露組及低暴露組發生小兒白血病的危險性皆高於極低暴露組,調整後的RR分別為1.07(95%CI=0.84–1.36)、1.17(95%CI=0.92–1.49)、1.15(95%CI=0.89–1.48),亦皆未達統計上之顯著差異。在針對兒童全癌症暴露分組的RR值作線性趨勢檢定分析時發現,各組之RR值並無顯著的線性劑量效應關係存在(p=0.077),而小兒白血病各組之RR值亦未有顯著的劑量效應關係存在(p=0.859);此外,居住於暴露等級≧90百分位數鄉鎮市區之兒童,本研究也未發現其發生全癌症(調整後RR=1.26,95%CI=1.00–1.60)及小兒白血病(調整後RR=1.46,95%CI=0.91–2.32)相對危險性顯著高於居住於未有暴露鄉鎮市區之兒童,居住區域內有國民中小學校園遭高壓輸電線跨越鄉鎮市區之兒童其全癌症(調整後RR=1.05,95%CI=0.98–1.13)及小兒白血病(調整後RR=0.99,95%CI=0.86–1.13)發生率也未高於對照組兒童。 結論:本研究利用三種暴露評估方式界定台灣地區鄉鎮市區極低頻磁場之暴露狀況,但均未發現居住於較高磁場暴露之鄉鎮市區之兒童其小兒癌症及白血病有顯著增加的現象,由於市售地理資訊系統目前僅能提供高壓輸電線之圖層資料,其他環境中的電力設施(如變電所、配電線及變電箱等)均未能於本研究中加以評估其對磁場強度之貢獻,因此可能存在有潛在的訊息偏差問題。 關鍵詞:小兒白血病、地理資訊系統、極低頻磁場、流行病學、發生率、波以松迴歸、相對危險性
摘要(英)Background and Objectives: In June, 2001, the International Agency for Research on cancer affiliated with the World Health Organization reviewed scientific evidence from both epidemiological and animal studies and concluded that exposure to extremely-low-frequency magnetic field (ELF) greater than 4 mili–Gauss (mG) is a possible cause of childhood leukemia. Although on-site measurement, using instrument, can be performed to obtain direct information on ELF exposure, many epidemiological studies still used indirect exposure measures for exposure assessment mainly due to the cost consideration. This study attempts to use the geographic information system (GIS) for calculating high-tension transmission lines density in all townships around the country. Together with cancer incidence data, this study aimed to investigate the association between environmental exposure to ELF indicated by transmission line density and the risk of cancer among children aged less than 15. Materials and Methods: This study used the 2002 version GIS to analyze the high-tension transmission lines density for all 359 townships in Taiwan; and to calculate the percentage in area within 100 meters (m) on either side of the power lines. Comparisons were made between children in each percentage exposure quartiles; as well as between the children living in townships with percentage exposure ≧90th percentile and those living in areas with a percentage exposure of zero. Additionally, we also compared incidence rate of childhood cancer between children in townships with at least one elementary or junior high school passed over by high-tension transmission lines and those who didn’t have such exposure. The incidence data on childhood cancer were retrieved from the 1991 to 1997 cancer registration. The number of incidence for all cancer and childhood leukemia was 3,684 and 1,122, respectively among children aged 0-14 years. The statistical analyses included calculation of calendar–, age–, and sex–standardized incidence ratio (SIR) for the study subjects living in townships with different exposure classifications with reference to the overall incidence rate of Taiwan. We also used Poisson regression model adjusted for age, sex, calendar year, and level of urbanization, to calculate the rate ratio (RR) of childhood cancer in relation to elevated exposures. Results: Study subjects in the three higher exposure quartiles (i.e., ≧75th, ≧50th?<75th, and >25th?<50th) had higher SIRs of all cancer and childhood leukemia than those in the lowest quartile (i.e., <25th). Multivariate regression analysis adjusted for calendar year, sex, age, and level of urbanization showed that as compared to children with the lowest exposure (<25th), children with exposure of ≧75th, ≧50th?<75th, and >25th?<50th all had non-significantly increased rate ratio (RR) of 1.11 (95%CI=0.97–1.26), 1.10 (95%CI=0.96–1.25), and 1.03 (95%CI=0.89–1.18), respectively. The corresponding figures for childhood leukemia were 1.07 (95%CI=0.84–1.36), 1.17 (95%CI=0.92–1.49), and 1.15 (95%CI=0.89–1.48). Again, these relative risk estimates were also non-significant statistically. Results from trend analyses showed that there was no significant dose gradient between level of exposure and RR of all cancer (p=0.077) and RR of childhood leukemia (p=0.859). Additionally, comparison between children with percentage exposure ≧90th and unexposed children also suggested no significantly increased risk of all cancer (RR=1.26, 95 CI=1.00-1.60) and childhood leukemia (RR=1.46, 95% CI=0.91-2.32). Children living in townships with campuses passed by high-tension transmission lines also did not show significantly increased risks of all cancer (RR=1.05, 95% CI=0.98-1.13) and childhood leukemia (RR=0.99, 95% CI=0.86-1.13). Conclusion: By using three different strategies in determining ELF exposure level of townships in Taiwan, this study did not disclose any significantly increased risk of childhood leukemia in townships with elevated exposure to ELF. Results from the current analysis are subject to potential information bias due to the fact that the GIS includes only high-tension transmission lines and did not include the information on other environmental source of ELF such as substation, transmission lines, and transformers. Keywords: childhood leukemia, geographic information system, extremely-low-frequency magnetic field, epidemiology, incidence rate, Poisson regression, relative risk.
論文目次第壹章 緒論……………………………………..……………………….1 第一節 研究動機……………………………………………………...1 第二節 研究目的……………………………………………………...3 第貳章 文獻探討……………………………………..………………….4 第一節 地理資訊系統概論…………………………………………...4 地理資訊系統的定義………………………………………………...4 地理資訊系統的資料及功能………………………………………...6 地理資訊系統的應用………………………………………………...8 第二節 環境極低頻電磁場的來源及特性………………………….11 環境極低頻電磁場的來源………………………………………….11 環境極低頻電磁場的特性………………………………………….12 環境極低電頻磁場的測量單位…………………………………….13 第三節 環境極低頻磁場強度的暴露評估方法…………………….14 間接測量方法……………………………………………………….14 直接測量方法……………………………………………………….21 不同暴露評估方法相關性之研究………………………………….24 第四節 環境極低頻磁場之健康效應……………………………….32 小兒白血病………………………………………………………….32 其他兒童癌症……………………………………………………….45 環境極低頻磁場與小兒白血病研究之方法學討論……………….48 第?章 材料與方法…………………………………………………….53 第一節 研究資料…………………………………………………….53 第二節 研究架構…………………………………………………….54 第三節 各鄉鎮市區之極低頻磁場暴露評估……………………….55 第四節 統計分析…………………………………………………….58 標準化發生比……………………………………………………….58 多變量分析………………………………………………………….59 趨勢分析…………………………………………………………….60 第肆章 結果…………………………………………………………….61 第一節 鄉鎮市區暴露面積百分比之描述性統計………………….61 第二節 以359個鄉鎮市區暴露面積百分比之四分位數來界定暴露分組之分析………………………………………………….62 標準化發生比……………………………………………………….63 多變量分析………………………………………………………….65 趨勢分析…………………………………………………………….67 第三節 按359個鄉鎮市區暴露面積百分比以百分比≧90百分位數與百分比為0者進行比較之分析………………………......69 標準化發生比……………………………………………………….69 多變量分析………………………………………………………….71 趨勢分析…………………………………………………………….73 第四節 以359個鄉鎮市區有無被高壓輸電線跨越中小學校園來分組之分析…………………………………………………….75 標準化發生比……………………………………………………….75 多變量分析………………………………………………………….76 趨勢分析…………………………………………………………….78 第五節 以359個鄉鎮市區暴露面積百分比之二分位數來界定暴露分組之分析……………………………………………………………….79 多變量分析………………………………………………………….79 趨勢分析…………………………………………………………….81 第六節 以359個鄉鎮市區暴露面積百分比之三分位數來界定暴露分組之分析……………………………………………………….83 多變量分析………………………………………………………….83 趨勢分析…………………………………………………………….86 第伍章 討論…………………………………………………………….88 第一節 研究結果摘要整理………………………………………….88 第二節 本研究與過去研究發現之比較…………………………….93 第三節 研究方法之優點與限制…………………………………….99 優點………………………………………………………………….99 缺點與限制………………………………………………………...100 第四節 結論與建議………………………………………………...104 參考文獻………………………………………………………………...105 表 1. 全癌症的年代、年齡及性別標準化發生比(以暴露面積百分比之四分位數分組)………………………………………………114 表 2. 小兒白血病的年代、年齡及性別標準化發生比(以暴露面積百分比之四分位數分組)…………………………………………115 表3. 全癌症之複迴歸分析(按暴露面積百分比之四分位數分組)………………………………………………………………116 表 4. 小兒白血病之複迴歸分析(按暴露面積百分比之四分位數分組)………………………………………………………………117 表 5. 全癌症的年代、年齡及性別標準化發生比(以暴露面積百分比≧90百分位數與暴露面積百分比為0分組)……………….118 表 6. 小兒白血病的年代、年齡及性別標準化發生比(以暴露面積百分比≧90百分位數與暴露面積百分比為0分組)………….119 表 7. 全癌症之複迴歸分析(按暴露面積百分比≧90百分位數與暴露面積百分比為0分組)……………………………………….120 表 8. 小兒白血病之複迴歸分析(按暴露面積百分比≧90百分位數與暴露面積百分比為0分組)………………………………….121 表 9. 全癌症的年代、年齡及性別標準化發生比(以境內國民中小學校園有無被高壓輸電線跨越分組)……………………………122 表 10. 小兒白血病的年代、年齡及性別標準化發生比(以境內國民中小學校園有無被高壓輸電線跨越分組)……………………..123 表 11. 全癌症之複迴歸分析(按境內國民中小學校園有無被高壓輸電線跨越分組)…………………………………………………..124 表 12. 小兒白血病之複迴歸分析(按境內國民中小學校園有無被高壓輸電線跨越分組)……………………………………………..125 表 13. 全癌症之複迴歸分析(按暴露面積百分比二分位數分組)…126 表 14. 小兒白血病之複迴歸分析(按暴露面積百分比之二分位數分組)……………………………………………………………..127 表 15. 全癌症之複迴歸分析(按暴露面積百分比三分位數分組)…128 表 16. 小兒白血病之複迴歸分析(按暴露面積百分比之三分位數分組)……………………………………………………………..129 表 17. 全癌症之複迴歸分析(以暴露面積百分比之四分位數結合境內國民中小學校園有無被高壓輸電線跨越分組)……………..130 表 18. 小兒白血病之複迴歸分析(以暴露面積百分比之四分位數結合境內國民中小學校園有無被高壓輸電線跨越分組)………..131 圖 1. 利用GIS處理資料圖層之示範簡圖Ⅰ(鄉鎮市區暴露面積百分比)………………………………………………………………132 圖 2. 利用GIS處理資料圖層之示範簡圖Ⅱ(境內有無國民中小學校園被高壓輸電線跨越)…………………………………………133 圖 3. 台灣地區359個鄉鎮市區被高壓輸電線兩側100公尺跨越面積佔總面積百分比分布之直方圖………………………………..134 附錄 A. IARC人類致癌物質之分類………………………………...135 附錄 B. 地理資訊系統向量式資料與網格式資料的優缺點比較….136 附錄 C. 電磁波頻譜………………………………………………….137 附錄 D. 1991–1997年台灣地區0–14歲人口數…………………..138 附錄 E. 1991–1997年台灣地區0–14歲人口數變化圖…………..139 附錄 F. 1991–1997年台灣地區0–14歲全癌症發生病例數……...140 附錄G. 1991–1997年台灣地區0–14歲全癌症發生病例數變化圖............................................................................................141 附錄 H. 1991–1997年台灣地區0–14歲小兒白血病發生病例數..142 附錄 I. 1991–1997年台灣地區0–14歲小兒白血病發生病例數變化圖……………………………………………………………..143 附錄 J. 1/25000台灣地區鄉鎮市區圖層(周界以多邊形圖層(polygon)表示)…………………………………………………………144 附錄 K. 1/5000台灣地區國民中小學圖層(校園周界以多邊形圖層(polygon)表示)……………………………………………..145 附錄 L. 1/5000台灣地區高壓輸電線圖層(包括69/161/345 KV高壓輸電線之線圖層(line))……………………………………..146 附錄 M. 利用GIS估計台灣地區359個鄉鎮市區被高壓輸電線兩側100公尺跨越面積之百分比………………………………..147 附錄 N. 都市化程度對照表………………………………………….159
參考文獻Ahlbom A., Day N., Feychting M., Roman E., Skinner J., Dockerty J., Linet M., McBride M., Michaellis J., Olsen J.H., Tynes T., Verkasalo P.K. A pooled analysis of magnetic fields and childhood leukemia. Br J Cancer 2000;83:692-8. Armstrong B. G., Deadman J., McBride M. L. The determinants of Canadian children's personal exposures to magnetic fields. Bioelectromagnetics 2001;22:161-9. Armstrong B. G. Comparing standardized mortality ratios. Ann Epidemiol 1995;5:60-4. Bianchi N, Crosignani P, Rovelli A, Tittarelli A., Carnelli C. A., Rossitto F., Vanelli U., Porro E., Berrino F. Overhead electricity power lines and childhood leukemia: a registry-based, case-control study. Tumori 2000;86:195-8.【In Italian with English abstract】 Blaasaas K. G., Tynes T. Comparison of three different ways of measuring distances between residences and high voltage power lines. Bioelectromagnetics 2002;23:288-91. Clinard F., Milan C., Harb M., Carli P. M., Bonithon-Kopp C., Moutet J. P., Faivre J., Hillon P. Residential magnetic field measurements in France: comparison of indoor and outdoor measurements. Bioelectromagnetics 1999;20:319-26. Coghill R. W., Steward J., Philips A. Extra low frequency electric and magnetic fields in the bedplace of children diagnosed with leukaemia: a case-control study. Eur J Cancer Prev 1996;5:153-8. Coleman M. P., Bell C. M., Taylor H. L., Primic-Zakelj M. Leukaemia and residence near electricity transmission equipment: a case-control study. Br J Cancer 1989;60:793-8. Copeland K. T., Checkoway H., McMichael A. J., Holbrook R. H. Bias due to misclassification in the estimation of relative risk. Am J Epidemiol 1977;105:488-95. Dockerty J. D., Elwood J. M., Skegg D. C., Herbison G. P. Electromagnetic field exposures and childhood cancers in New Zealand. Cancer Causes Control 1998;9:299-309. Draper G., Vincent T., Kroll M. E., Swanson J. Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study. BMJ 2005;330:1290. Eskelinen T., Keinanen J., Salonen H., Juutilainen J. Use of spot measurements for assessing residential ELF magnetic field exposure: a validity study. Bioelectromagnetics 2002;23:173-6. Feychting M., Ahlbom A. Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol 1993;138:467-81. Forssen U. M., Ahlbom A., Feychting M. Relative contribution of residential and occupational magnetic field exposure over twenty-four hours among people living close to and far from a power line. Bioelectromagnetics 2002;23:239-44. Fulton J. P., Cobb S., Preble L., Leone L., Forman E. Electrical wiring configurations and childhood leukemia in Rhode Island. Am J Epidemiol 1980;111:292-6. Green L. M., Miller A. B., Agnew D. A., Greenberg M. L., Li J., Villeneuve P. J., Tibshirani R. Childhood leukemia and personal monitoring of residential exposures to electric and magnetic fields in Ontario, Canada. Cancer Causes Control 1999;10:233-43. Greenland S. Multiple-bias modeling for analysis of observation data. J R Stat Soc: Series A 2005;168:267-306 Greenland S., Sheppard A.R., kaune W.T., Poole C., Kelsh M.A. A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology 2000;11:624-34. Gullen W. H., Bearman J. E., Johnson E. A. Effects of misclassification in epidemiologic studies. Public Health Rep 1968;83:914-8. International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans, Vol 80, Leon: IARC, 2001. International Agency for Research on Cancer(IARC). IARC monographs on the evaluation of carcinogen risk to human:Complete list of agents evaluated and their classification.(cited 2006 May 23)Available from:URL:http://monographs.iarc.fr/ENG/Classification/index.php Jones T. L., Shih C. H., Thurston D. H., Ware B. J., Cole P. Selection bias from differential residential mobility as an explanation for associations of wire codes with childhood cancer. J Clin Epidemiol 1993;46:545-8. Kabuto M., Nitta H., Yamamoto S., Yamaguchi N., Akiba S., Honda Y., Hagihara J., Isaka K., Saito T., Ojima T., Nakamura Y., Mizoue T., Ito S., Eboshida A., Yamazaki S., Sokejima S., Kurokawa Y., Kubo O. Childhood leukemia and magnetic fields in Japan: A case-control study of childhood leukemia and residential power-frequency magnetic fields in Japan. Int J Cancer 2006;119:643-50. Kaune W. T., Darby S. D., Gardner S. N., Hrubec Z., Iriye R. N., Linet M. S. Development of a protocol for assessing time-weighted-average exposures of young children to power-frequency magnetic fields. Bioelectromagnetics 1994a;15:33-51. Kaune W. T., Savitz D. A. Simplification of the Wertheimer-Leeper wire code. Bioelectromagnetics 1994b;15:275-82. Kaune W. T., Stevens R. G., Callahan N. J., Severson R. K., Thomas D. B. Residential magnetic and electric fields. Bioelectromagnetics 1987;8:315-35. Kheifets L., Shimkhada R. Childhood leukemia and EMF: review of the epidemiologic evidence. Bioelectromagnetics 2005;Suppl 7:S51-9. Levallois P., Gauvin D., Gingras S., St-Laurent J. Comparison between personal exposure to 60 Hz magnetic fields and stationary home measurements for people living near and away from a 735 kV power line. Bioelectromagnetics 1999;20:331-7. Li C. Y., Lee W. C., Lin R. S. Risk of leukemia in children living near high-voltage transmission lines. J Occup Environ Med 1998;40:144-7. Li C. Y., Theriault G., Lin R. S. A validity analysis of residential magnetic fields estimated from high-voltage transmission lines. J Expo Anal Environ Epidemiol 1997a;7:493-504. Li C. Y., Theriault G., Lin R. S. Residential exposure to 60-Hertz magnetic fields and adult cancers in Taiwan. Epidemiology 1997b;8:25-30. Lin C. M., Li C. Y., Mao I. F. Birth outcomes of infants born in areas with elevated ambient exposure to incinerator generated PCDD/Fs. Environ Int 2006;32:624-9. Lin C. M., Li C. Y., Yang G. Y., Mao I. F. Association between maternal exposure to elevated ambient sulfur dioxide during pregnancy and term low birth weight. Environ Res 2004;96:41-50. Lin R. S., Lee W. C. Risk of childhood leukemia in areas passed by high power lines. Rev Environ Health 1994;10:97-103. Linet M. S., Hatch E. E., Kleinerman R. A., Robison L. L., Kaune W. T., Friedman D. R., Severson R. K., Haines C. M., Hartsock C. T., Niwa S., Wacholder S., Tarone R. E. Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med 1997;337:1-7. London S. J., Thomas D. C., Bowman J. D., Sobel E., Cheng T. C., Peters J. M. Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol 1991;134:923-37. McBride M. L., Gallagher R. P., Theriault G., Armstrong B. G., Tamaro S., Spinelli J. J., Deadman J. E., Fincham S., Robson D., Choi W. Power-frequency electric and magnetic fields and risk of childhood leukemia in Canada. Am J Epidemiol 1999;149:831-42. McDowall M. E. Mortality of persons resident in the vicinity of electricity transmission facilities. Br J Cancer 1986;53:271-9. Mezei G., Kheifets L. Selection bias and its implications for case-control studies: a case study of magnetic field exposure and childhood leukaemia. Int J Epidemiol 2006;35:397-406. Mezei G., Li C. Y., Sung F. C., Silva M., Chen P. C., Chen L. M. Survey of residential power frequency magnetic field exposure among children in Taiwan. The Bioelectromagnetics Society (BEMS) 28th Annual Meeting,-Cancun, Mexico, 11-15 June, 2006. Michaelis J., Schuz J., Meinert R., Menger M., Grigat J. P., Kaatsch P., Kaletsch U., Miesner A., Stamm A., Brinkmann K., Karner H. Childhood leukemia and electromagnetic fields: results of a population-based case-control study in Germany. Cancer Causes Control 1997;8:167-74. Michaelis J., Schuz J., Meinert R., Zemann E., Grigat J. P., Kaatsch P., Kaletsch U., Miesner A., Brinkmann K., Kalkner W., Karner H. Combined risk estimates for two German population-based case-control studies on residential magnetic fields and childhood acute leukemia. Epidemiology 1998;9:92-4. Myers A., Clayden A. D., Cartwright R. A., Cartwright S.C. Childhood cancer and overhead powerlines: a case-control study. Br J Cancer 1990;62:1008-14. Newell D. J. Errors in the interpretation of errors in epidemiology. Am J Public Health 1962;52:1925-8. Nishchal N. K., Paulraj R., Mishra U. S., Sahu S. K., Lochan R. Electromagnetic field in and around the campus of Jawaharlal Nehru University, New Delhi. Indian J Biochem Biophys 1999;36:374-8. Olsen J. H., Nielsen A., Schulgen G. Residence near high voltage facilities and risk of cancer in children. BMJ 1993;307:891-5. Preece A. W., Grainger P., Golding J., Kaune W. Domestic magnetic field exposures in Avon. Phys Med Biol 1996;41:71-81. Preston-Martin S., Navidi W., Thomas D., Lee P. J., Bowman J., Pogoda J. Los Angeles study of residential magnetic fields and childhood brain tumors. Am J Epidemiol 1996;143:105-19. Savitz D. A., Wachtel H., Barnes F. A., John E. M., Tvrdik J. G.. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol 1988;128:21-38. Schuz J., Grigat J. P., Brinkmann K., Michaelis J. Residential magnetic fields as a risk factor for childhood acute leukaemia: results from a German population-based case-control study. Int J Cancer 2001;91:728-35. Severson R. K., Stevens R. G., Kaune W. T., Thomas D. B., Heuser L., Davis S., Sever L. E. Acute nonlymphocytic leukemia and residential exposure to power frequency magnetic fields. Am J Epidemiol 1988;128:10-20. Sun W. Q., H?roux P., Clifford T., Sadilek V., Hamade F. Characterization of the 60-Hz Magnetic Fields in Schools of the Carleton Board of Education. AIHA J 1995;56:1215-24. Tard?n A., Velarde H., Rodriguez P., Moreno S., Raton M., Munoz J., Fidalgo A. R., Kogevinas M. Exposure to extremely low frequency magnetic fields among primary school children in Spain. J Epidemiol Community Health 2002;56:432-3. Tarone R. E., Kaune W. T., Linet M. S., Hatch E. E., Kleinerman R. A., Robison L. L., Boice J. D., Jr., Wacholder S. Residential wire codes: reproducibility and relation with measured magnetic fields. Occup Environ Med 1998;55:333-9. Tomenius L. 50-Hz electromagnetic environment and the incidence of childhood tumors in Stockholm County. Bioelectromagnetics 1986;7:191-207. Tynes T., Haldorsen T. Electromagnetic fields and cancer in children residing near Norwegian high-voltage power lines. Am J Epidemiol 1997;145:219-26. UK Childhood Cancer Study Investigators. Childhood cancer and residential proximity to power lines. Investigators. Br J Cancer 2000;83:1573-80. UK Childhood Cancer Study Investigators. Exposure to power-frequency magnetic fields and the risk of childhood cancer. Lancet 1999;354:1925-31. Verkasalo P. K., Pukkala E., Hongisto M. Y., Valjus J. E., Jarvinen, P. J., Heikkila, K. V., Koskenvuo, M. Risk of cancer in Finnish children living close to power lines. Br Med J 1993;307:895-9. Walker A. M. Observation and inference : an introduction to the methods of epidemiology. Epidemiology Resources Inc., 1991. Wertheimer N. Electrical wiring configurations and childhood leukemia in Rhode Island. Am J Epidemiol 1980;111:461-2. Wertheimer N., Leeper E. Adult cancer related to electrical wires near the home. Int J Epidemiol 1982;11:345-55. Wertheimer N., Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol 1979;109:273-83. 江博煌、莫喬治:地理資訊系統與公共衛生。初版。台北:文華圖書管理資訊股份有限公司,2005。 江榮城、王金墩:電磁場概論與暴露限制標準。電機技師雙月刊 2001;15:86-99。 江榮城:電力品質實務(二)。初版。台北市:全華科技股份有限公司,2000。 吳劍秋:基礎電磁學。二版一刷。台北:全華科技圖書股份有限公司,2004。 呂正章:潛談地理資訊系統。CADesigner 2001;164:17-22。 李中一、宋鴻樟、陳富莉:就讀高壓輸電線跨越校園上空學校學童之ㄧ般健康狀態評估。台灣公共衛生雜誌;2006;25:83-92。 李中一、林瑞雄:極低頻電磁場暴露與癌症之流行病學-文獻探討。勞工安全衛生研究季刊 1995;3:1-24。 李中一:國民中小學校園因鄰近變電所或高壓輸電線所造成之環境極低頻磁場暴露-現況調查與管制建議。教育部環保小組委託工作計畫(計畫編號:0920141625),2004a。 李中一:執行非屬原子能游離輻射-高壓輸電線、變電所或行動電話基地台鄰近學校產生電磁場之測量及其對學童健康評估。環保署委託研究計畫(計畫編號:EPA–93–F105–02–106),2004b。 李中一:測量工具的效度與信度。台灣公共衛生雜誌;2004;23:272-81。 李中一:極低頻電磁場之人類致癌效應-回顧近期之流行病學文獻。台灣職業醫學雜誌;2000;7:57-70。 李維進:高壓輸電線電頻磁場暴露與小而白血病之流行病學研究。國防醫學院公共衛生學研究所碩士論文,1994。 周天穎:地理資訊系統理論與實務。再版一刷。台北:儒林圖書有限公司,2003。 林志銘、李中一、毛義方:焚化爐產生之大氣戴奧辛暴露與生殖危害之相關性研究。台灣公共衛生雜誌;2002;21:197-206。 林傑斌、劉明德:地理資訊系統GIS理論與實務。初版。台北:文魁資訊股份有限公司,2002。 林意凡:極低頻磁場暴露之健康風險評估-以台北縣之國小為例。國立台灣大學職業醫學與工業衛生研究所碩士論文,2003,13 p。 邱佳正:時間地理資訊系統建構之研究—以都市土地使用分區變遷為例。國立中山大學海洋環境及工程研究所碩士論文,2003,110 p。 范成楝:空間技術處理技術導論。中央研究院計算中心空間資訊小組。(引用2006?5?16)Available from:URL:http://www.ascc.sinica.edu.tw/gis/NDASupport/class92/fango.files/frame.htm#slide0015.htm 陳建仁:流行病學:原理與方法。初版第四刷。台北:聯經出版事業公司,2000。 陳培君:汐止居民極低頻磁場暴露評估-對於婦女睡眠及生育之影響。國立台灣大學公共衛生學院環境衛生研究所碩士論文,2001,67 p。 黃敏郎、劉守恆、仲琦科技:地理資訊系統基礎操作實務。初版。台北:文魁資訊股份有限公司,2005。 溫在弘、金傳春、蕭朱杏、嚴漢偉、范毅軍、蘇明道:地理資訊系統應用於傳染流行病的疫情偵測、數據分析與速效控制。台灣公共衛生雜誌 2002;21:449-56。 葛維忠:台灣高壓輸電線兩側居民電頻磁場暴露健康風險推估。國立陽明大學環境衛生研究所碩士論文,2003,117 p。 廖勇柏、李文宗、陳建仁:趨勢面分析法在癌症地圖繪製上的應用:以台灣的乳癌死亡率為例。中華公共衛生雜誌;1998;17:474-84。 廖勇柏、陳建仁、李文宗、徐書儀:台灣地區癌症死亡率與發生率電子地圖的建構及使用。台灣公共衛生雜誌;2003;2:227-36。 廖勇柏、鐘雅齡、徐書儀、吳佳芳、鄭瓊珍:台灣地區女性肺癌死亡率之時空變異分析。中山醫學雜誌;2004;15:1-7。 劉介宇、洪永泰、莊義利、陳怡如、翁文舜、洪伊苓、梁賡義:台灣地區鄉鎮市區都市化分層之研究。新竹(元培技術學院):台灣健康管理學術研討會,2005年6月19日。 劉侑蒼:鋪面養護管理系統與網際網路地理資訊系統之整合研究。國立中央大學機械工程研究所碩士論文,2004,66 p。 賴進貴、葉高華、陳汶軍:地理資訊系統應用於登革熱防治之檢討與建議。環境與世界;2005;11:65-81。 癌症防治組:九十年癌症登記報告記者會新聞稿。台北:行政院衛生署國民健康局,2004年11月18日。 癌症防治組:八十九年癌症登記報告記者會新聞稿。台北:行政院衛生署國民健康局,2003年12月29日。
論文頁數113
附註
全文點閱次數
資料建置時間
轉檔日期
全文檔存取記錄
異動記錄M admin Y2008.M7.D3 23:18 61.59.161.35