輔仁大學
學術資源網

記錄編號6329
狀態NC094FJU00105028
助教查核
索書號
學校名稱輔仁大學
系所名稱生命科學系
舊系所名稱
學號491546059
研究生(中)林育青
研究生(英)Yu-Ching Lin
論文名稱(中)以光合菌FJ1生產PHBV
論文名稱(英)PHBV production in Rhodobacter sphaeroides FJ1
其他題名
指導教授(中)楊美桂
指導教授(英)Mei-Kwei Yang
校內全文開放日期不公開
校外全文開放日期不公開
全文不開放理由
電子全文送交國圖.同意
國圖全文開放日期.2008.07.01
檔案說明電子全文
電子全文01
學位類別碩士
畢業學年度94
出版年
語文別中文
關鍵字(中)光合菌 聚羥基丁酯 廢水 氣相層析質譜分析儀 生物可分解性
關鍵字(英)Rhodobacter sphaeroides FJ1 PHBV poly(hydroxybutyrate- co-hydroxyvalerate) PHB Poly - hydroxybutyrate waste water GC/MS biodegradation
摘要(中)以輔大化糞池排放水及輔園餐廳廢水培養光合菌FJ1,當加入50%之TSB,可促進其生長,但PHB的產量並不高,亦無PHBV的生成。因此利用二次饋料的培養方式,加入Sodium acetate為碳源,並將碳氮比值調為20,則PHBV的產量可達菌體總重之41.1 %,但HV含量極低。若除Sodium acetate外再加入Sodium propionate,碳氮比為20及40時,PHBV產量分別為乾菌重的21.1%與35.0%,其HV含量為0.4%與1.9%。若將碳源改為Valeric acid,其碳氮比值為10時,雖然PHBV產量只為菌重的20.0%,但其HV的含量提高至14.1%。故加入acetate ,propionate與valerate可促使光合菌FJ1合成PHBV。
摘要(英)Rhodobacter sphaeroides FJ1 was able to grow in wastewater released from the human waste treatment.plant and food factory of Fu-Jen University. Optimal growth and PHB production were achieved when R. sphaeroides FJ1 was grown in wastewater containing 50% tryptic soy broth. Utilizing low-cost waste water and fed-batch methods,when the carbon source is sodium acetate and the C/N ration was 20, the PHBV increased to a 41.1% but the HV level was very low. In addition to sodium acetate, added sodium propionate as carbon source, when the C/N ration was 20 and 40,the PHBV increased to a 21.1% and 35.0%, and the HV level was 0.4% and 1.9%. When the carbon source is valerate and the C/N ration was 10, the PHBV increased to 20.0%, but the HV level was 14.1% .The results indicate that R. sphaeroides FJ1 can utilize acetate, propionate and valerate to product high levels of PHBV.
論文目次目 錄 目錄 0I 圖目錄 0III 中文摘要 0 1 英文摘要 0 2 緒論 003 材料與方法 007 一、菌種 007 二、培養基 7 三、以氣相層析質譜分析儀(GC/MS)分析PHBV組成 08 四、TSB與廢水之培養基的製備 011 五、Sodium acetate,Sodium acetate與Sodium propionate及Valeric acid培養基的製備 011 六、光合菌FJ1之培養 012 七、不同碳源對PHBV含量的影響 12 八、PHA的萃取、酸水解及甲基化處理 13 結果 014 一、光合菌FJ1之培養 014 二、以氣相層析質譜分析法(GC/MS)分析標準品及內標準品 014 (一)分析條件的設定 014 (二)標準品檢量線的建立 015 三、以GC/MS分析不同碳源對光合菌FJ1合成PHBV的影響 15 (一)以Sodium acetate為碳源對PHBV產量的影響 0 16 0 (二)以Sodium acetate及Sodium propionate為碳源對PHBV產量的影響 016 (三)以Valeric acid為碳源對PHBV產量的影響討論 017 附錄 43 參考資料 47 圖 目 錄 圖1:光合菌FJ1以不同來源廢水培養之生長曲線 19 圖2:以GC/MS分析標準品Methyl(R)-3-hydroxybutyrat 20 圖3:以GC/MS分析標準品Methyl(R)-3-hydroxyvalerate 21 圖4:以GC/MS分析標準品Methyl benzoate(內標準品) 22 圖5:以GC/MS分析Methyl(R)-3-hydroxybutyrate的檢量線 23 圖6:以GC/MS分析Methyl(R)-3-hydroxyvalerate的檢量線 024 圖7:光合菌FJ1於TSB與輔大理二舍廁所排放水以不同比例混合為培養基培養時之PHB產量 025 圖8:光合菌FJ1以sodium acetate為碳源培養之PHB產量(A)及HV產量(B) 026 圖9:光合菌FJ1以sodium acetate為碳源培養之PHB產量 027 圖10:光合菌FJ1以碳氮比例20之sodium acetate為碳源培養之HB與HV相對量測定 28 圖11:光合菌FJ1以sodium acetate為碳源培養之細菌乾重 029 圖12:光合菌FJ1以sodium acetate及sodium propionate為碳源培養之PHBV產量(A)及HV產量(B) 30 圖13:光合菌FJ1以sodium acetate及sodium propionate為碳源培養之HV與PHBV相對量測定 31 圖14:光合菌FJ1以sodium acetate及sodium propionate為碳源培養的細菌乾重 32 圖15:光合菌FJ1以sodium acetate及sodium propionate為碳源培養的PHBV產量(A)及HV產量(B) 0 33 圖16:光合菌FJ1以sodium acetate及sodium propionate為碳源培養之HV與PHBV相對量測定 34 圖17:光合菌FJ1以sodium acetate及sodium propionate為碳源培養之細菌乾重 035 圖18:光合菌FJ1以valeric acid為碳源培養之PHBV產量 0 036 圖19:光合菌FJ1以valeric acid為碳源培養之菌乾重 0 0 37 圖20:光合菌FJ1以碳氮比例10之valeric acid為碳源培養之PHBV產量及HB與HV相對量測定(B) 38
參考文獻王韻婷(2000)高分子生物塑膠生產菌之分離,特性分析及其高分子合成基因之選殖。國立臺灣大學農化研究所碩士論文 林鈺棋(2004)光合菌FJ1生產PHB相關基因之探討。輔仁大學生命科學研究所碩士論文 Anderson, A. J., and E. A. Dawes. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472. Brandl, H., R. A. Gross, R. W. Lenz, and C. W. Fuller. 1988. Pseudomonas oleovorans as a source of poly ( ?-hydroxyalkanoates ) for potential applications as biodegrable polyesters. Appl. Environ. Microbiol. 54: 1977-1982. Chen,L. J. and M. Wang. 2002.Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomaterials. 23:2631-2639 Chen, G. Q. and Q. Wu. 2005. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials. 26:6565-6578 Chua, A. S. M., H. Takabatake, H. Satoh and T. Mino. Production of polyhydroxyalkanotes(PHA) by activated sludge treating municipal wastewater:effect of pH, sludge retention time(SRT), and acetate concentration in influent.Water Research.37:3602-3611 Deniz, O., Y., Ufuk, G., Lemi, T., Meral, Y., and Inci, E. 1999. Identification of by-products in hydrogen producing bacteria ; Rhodobacter sphaeroides O.U. 001 grown in the waste water of a sugar refinery. J. Biotechnol. 70: 125-131. Ganzeveld, K., J.,A. V. Hagen,M. H. V. Agteren, W. D. Koning, and A. J. M. S. Uiterkamp. 1999. Upgrading of organic waste:production of the copolymer poly-3-hydroxybutyrate-co-valerate by Ralstonia eutrophus with organic waste as sole carbon source. Journal of Cleaner Production.7:413-419 Hashimoto, K., Tsuboi, H., Iwasaki, S., and Shirai, Y. 1993. Effect of pH on the production of poly-β-hydroxybutyrate by photosynthetic bacterium, Rhodospirillum rubrum. J. Chem. 26: 56-58 Hassan, M. A., Shirai, Y., Kusubayashi, N., Abdul Karim, M., I., NaKanishi, K., and Hashimoto, K. 1996. Effect of formic acid on the production of polyhydroxyalkanoate from anaerobically treated palm oil mill effluent by Rhodobacter sphaeroides. J. Ferment. Bioeng. 82: 151-156 Hassan, M. A., Shirai, Y., Kusubayashi, N., Abdul Karim, M., I., NaKanishi, K., and Hashimoto, K. 1997. The production of polyhydroxy-alkanoate from palm oil mill effluent by Rhodobacter sphaeroides. J. Ferment. Bioeng. 83: 485-488. Holmes, P. A. 1985. Applications of PHB - a microbially produced biodegradable thermoplastic. Phys. Technol. 16: 32-36. Ito,Y., H. Hasuda, M. Kamitakahara, C. Ohtsuki, M. Tanihara, I. K. Kang, and O. H. Kwon. 2005. A Composite of Hydroxyapatite with Electrospun Biodegradable Nanofibers as a Tissue Engineering Material. J. Biosci. Bioeng.100:43-49. Jendrossek, D., and R. Handrick. 2002. Microbial degradation of polyhydroxyalkanoat- es. Annu. Rev. Microbiol. 56: 403-432. Khanna, S., A. K. Srivastava. 2005.Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry. 40:607–619 Kitamura, H., Kurosawa, K., and Kobayashi, K. 1984. Organic wastewater treatment by photosynthetic bacteria. Photosynthetic bacteria. 112-121 Poirier, Y., C., Nawrath, and C. Somerville. 1995. Production of polyhydroxyalkanoates, a family of biodegradable platics and elastomers, in bacteria and plants. Biotechnology 13: 142-150. Lee, S. Y., 1995. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14. Lee, S. Y., 1996. Plastic bacteria:Progress and prospects for polyhydroxyalkanoates production in bacteria. TIBTECH.14: 431-438. Lemoigne, M. 1926. Products of dehydration and of polymerization of β-hydoxybutyric acid. Bull. Soc. Chem. Biol. 8: 770-782 Luzier, W. D., 1992. Materials derived from biomass/biodegradable materials. Proc. Natl. Acas. Sci. USA. 89:839-842. Madison L. L. and G. W. Huisman. 1999. Metabolic engineering of poly ( 3-hydroxyalkanoates ): from DNA to plastic. Microbiol. Mol. Biol. 63: 21-53 Nakajima, F., Kamiko, N., and Yamamoto, K. 1997. Organic wastewater treatment without greenhouse gas emission by photosynthetic bacteria. Wat. Sci. Tech. 35: 285-291 Rehm, B. H. A. and Steinb?chel, A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Biol. Macromol. 25: 3-19. Rossi,S., A. I. Azghani and A. Omri. 2004. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J. Antimicrobial Chemotherapy. 54:1013-1018 Rober, G. K., Karen, K. G., and Terry, A. L. 1997. Polyhydroxyalkanoaate production in Rhodobacter capsulatus : gene, mutants, expression, and physiology. Appl. Environ. Mcrobiol. 63: 3003-3009 Salehizadeh, H., M.C.M.V. Loosdrecht.2004.Production of polyhydroxyalkanoates by mixed culture:recent trends and biotechnological importance.Biotechnology advances.22:261-279 Santos, A. R., Jr.,B.M.P. Ferreira, E.A.R. Duek, H. Dolder and M.L.F. Wada. 2005. Use of blends of bioabsorbable poly(L-latic acid)/poly (hydroxybutyrate-co-hydroxyvalerate) as surfaces for Vero cell culture. Braz. J. Med. Biol. Res. 38:1623-1632 Shishatskaya, E. I., T.G. Volova, A.P. Puzyr, O.A. Mogilnaya and S.N. Efremov. 2004.Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J. Mater Sci-Mater M. 15:719-728 Slater, S. C., W. H. Voige, and D. E. Dennis. 1988. Cloning and expression in Escherichia coli of the Alicaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J. Bacteriol. 170: 4431-4436 Suzuki, T., Yamane, Y., and Shimizu, S. 1986. Mass production of poly-β -hydroxybutyric acid by fed batch culture with controlled carbon/nitrogen feeding. Appl. Microb. Biotechnol. 24: 370-374. Rober, G. K., Karen, K. G., and Terry, A. L. 1997. Polyhydroxyalkanoaate production in Rhodobacter capsulatus : gene, mutants, expression, and physiology. Appl. Environ. Microbiol. 63: 3003-3009
論文頁數51
附註
全文點閱次數
資料建置時間
轉檔日期
全文檔存取記錄
異動記錄M admin Y2008.M7.D3 23:18 61.59.161.35