摘要(英) | This thesis is based on Moody’s KMV model. To calculate the volatility of stock returns, we use the exponential weighted moving average model(EWMA)to capture the dynamic feature of volatility with the latest observation carrying the highest weight.
In practical applications, we find a major problem with respect to the KMV model. We should incorporate the expected operating results of companies in the KMV model, in particular, the downside risk. In theory, the most critical assumption of the Black-Scholes model is that it is applied to options in the financial market and thus, a riskless, arbitrage-free portfolio can be constructed. That is, the model provides a risk-neutral solution without having to considering the risk premium or the expected return of the stock. However, when the model is applied to predict corporation default probabilities, the setting is less likely to be risk-neutral and may have to take the expected operating results of corporations into consideration. This thesis adopts a non risk-neutral modification with a simplifying assumption that the company’s operating result will remain negative when it suffered two consecutive annual operating losses. Then, we calculate the trend of losses to estimate the expected loss by adding it to the total borrowing and re-estimate the default distance.
The major results are as follows. First, the parameter of the exponentially weighted moving average model, the decay factor, is 0.928311959. Second, we use Cluster Analysis to analyze the power of these two models. We find that KMV model adjusted for expected loss improves significantly over the original model. Third, we draw the ROC curve and find the same result as Cluster Analysis. Fourth, we find that incorporating the effect of expected loss is essential for the group of high credit risk corporations. Finally, the KMV model adjusted for expected loss has higher explanatory power than the KMV model with respect to TEJ credit risk ratings.
|
參考文獻 | 中文參考文獻
1、陳錦村 著(2004):風險管理概要 - 個案與實務
2、李佩芝 譯(2004):信用風險模型與巴塞爾資本協定
3、黃仁德、陳淑郁 著(2005):信用風險衡量理論與實務
4、陳業?、王衍智、許鴻英(2004),台灣企業財務危機之預測:信用評分法與
選擇權評價法孰優?,風險管?學報
5、王懷德(2002),KMV模型於國內未上市未上櫃之公開發?公司之研究,東
吳大學會計系碩士?文
6、?妙宜(2002),公司信用風險的衡?,政治大學?融研究所碩士?文
7、聶志宏(2002),公司債信用風險的評估-運用選擇權評價模式,淡江大學財
務?融學系碩士?文
8、楊博仁(2002),信用風險值-台灣企業違約後償還?之探討,東吳大學會計
系碩士?文
9、蔡晃銘(2002),總體經濟與產業因素對信用風險影響之研究,淡江大學財務
?融學系在職專班碩士?文
10、詹菲如(2003),貸款定價與績效評估-運用選擇權評價模式,淡江大學財
務?融學系碩士?文
11、何雅萍(2005),以KMV模型測度公司信用風險,輔仁大學金融所碩士論文
12、?沃牆、許峻賓(2003),KMV 模型於財務預警之實證研究,。真理大學財
經研究所碩士論文
13、林佳蓉(2000),信用風險模型之發展與衡量-以中長期資金運用制度為例,
中山大學財務管理學系碩士?文
14、趙令斌(1999),以選擇權模式衡量信用風險,東吳大學會計學系碩士論文
15、陳浩誠(2001),選擇權架構下公司債信用風險溢酬之探討,輔仁大學金融
所碩士論文
英文參考文獻
1、Altman, E.I, J. Hartzell, and M. Peck (1995), “Emerging Markets Corporate Bonds: A Scoring System, “ Salomon Brothers Inc., N.Y.
2、Altman, E.I., G. Marco and F. Varetto(1994),”Corporate distress diagnosis : Comparisons using linear discriminate analysis and Neural networks( The Italian Experience)”, Journal of Banking and Finance, pp.505-529.
3、Alexandros Benos, George Papanastasopoulos(2005), “Extending the Merton Model:
A Hybrid Approach to Assessing Credit Quality,” Working Paper, University of Piraeus
4、Amit Kulkarni, Alok Kumar Mishra and Jigisha Thakker(2005), “How Good is Merton Model at Assessing Credit Risk? Evidence from Inida.”
5、Black, F., and M. Scholes(1973),”The Price of Option and Corprate Liabilities”, Journal of Political Economy, pp637-654
6、Black, F., and John C. Cox.(1976), "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions." Journal of Finance, Vol.31, No.2, pp.351-367.
7、Crosbie, P. and J. Bohn(2003), Modeling Default Risk Modeling Methodology, Moody’s KMV
8、Crouhy, M., D. Galai, and R. Mark(2000),”A comparative Analysis of Current Credit Risk Model, ” Journal of Banking and Finance, pp.59-117.
9、Crouhy, M., D. Galai, and Robert Mark, (2003)“Risk Management”, McGraw-Hill International Editions.
10、Gupton, G. M., C. Finger, and M. Bhatia(1997), CreditMetrics Technical Document, JP Morgan.
11、Jarrow, R. A., and S. M. Turnbull, (1995) ,“ Pricing Derivatives on Financial Securities Subject to Credit Risk , ” Journal of Finance , Vol. 50 , pp. 53-85.
12、Jarrow, R. A. , D. Lando, and S. Turnbull (1997) ,“A Markov Model for the Term Structure of Credit Risk Spreads,”Review of Financial Studies, Vol.10, pp. 481-523.
13、John C. Hull, (2005)“Options, Futures AND Other Derivatives”, Fifth Edition.
14、Kim ,I. J. , K. Ramaswamy , and S. Sundaresan , (1993) ,” Does Default Risk in Coupons Affect the Valuation of Corporate Bonds? : A Contingent Claims Model ,”Financial Management , pp.117-131.
15、Kealhofer, S. and M. Kurbat(2001),“The Default Prediction Power of the Merton Approach, relative to Debt Ratings and Accounting Variables”, Moody’s KMV.
16、Longstaff , F.A. and E.S. Schwartz(1995), “ A Simple Approach to Valuing Risky
Fixed and Floating Rate Debt ,” Journal of Finance , Vol. 50 , pp.780-820.
17、Merton, R.(1974),”On the price of corporate:The risk structure of interest rates”, Journal of Finance 29, pp.449-470
18、Shimko, D. , N. Tejima , and D. Van Deventer ,(1993),”The Pricing of Risky Debt When Interest Rates are Stochastic ,” Journal of Fixed Income , Vol. 3 , pp.58-65.
19、Sobehart, Jorge R., Sean C. Keenan & Roger M. Stein(2000), “Benchmarking Quantitative Default Risk Models: A Validation Methodology”. Moody's Special Comment, Moody's Investors Service
20、Zhou , C.(1997), ” A Jump – Diffusion Approach to Modeling Credit Risk and
Valuing Defaultable Securities , “ Federal Reserve Board .
網站資訊
1、Moody’s Investors Services(http://www.moodys.com/)
2、Moody’s K.M.V. (http://www.moodyskmv.com/)
3、DefaultRisk.com (http://www.defaultrisk.com/)
4、Risk Magazine (http://www.risk.net/)
|