<table>
<thead>
<tr>
<th>記錄編號</th>
<th>10997</th>
</tr>
</thead>
<tbody>
<tr>
<td>狀態</td>
<td>建檔完成</td>
</tr>
<tr>
<td>助教查核</td>
<td>查核完成</td>
</tr>
<tr>
<td>學校名稱</td>
<td>輔仁大學</td>
</tr>
<tr>
<td>系所名稱</td>
<td>資訊工程學系</td>
</tr>
<tr>
<td>學號</td>
<td>497516264</td>
</tr>
<tr>
<td>研究生(中)</td>
<td>陳思敏</td>
</tr>
<tr>
<td>研究生(英)</td>
<td></td>
</tr>
<tr>
<td>論文名稱(中)</td>
<td>基於能量照度考量之球面光源場景成像計算</td>
</tr>
<tr>
<td>論文名稱(英)</td>
<td>Spherical Light Field Rendering Based on Radiance</td>
</tr>
<tr>
<td>其他題名</td>
<td></td>
</tr>
<tr>
<td>指導教授(中)</td>
<td>鄭進和</td>
</tr>
<tr>
<td>指導教授(英)</td>
<td></td>
</tr>
<tr>
<td>校內全文開放日期</td>
<td>2016.1.17</td>
</tr>
<tr>
<td>校外全文</td>
<td>2016.1.17</td>
</tr>
</tbody>
</table>
Global illumination is a model to generate photorealistic images in terms of the physically-based radiance propagation principle and also takes into account the direct illumination originated from light source as well as indirect illumination from other objects. There are two established rendering methods for global illumination: one is ray tracing method, tracing rays from the eye through the pixel grid back into the scene and computing indirection illumination with recursion; the other is radiosity method, accumulating the radiance transported between any two patches step by step until the steady state. In this thesis, we present a rendering method for spherical light source in a three-dimensional scene.
based on ray tracing and radiance propagation. We started with decomposing the light source surface into a set of triangles. Then it is needed to compute the totally effective radiance. During this effective radiance computation, a visibility determination process is involved. The goal of the visibility determination is to exclude some portions of light source triangles which can not light the intersection point. We use a rendering equation for computing direct illumination; as to indirect illumination, we also use recursive ray tracing to search influential objects. Then, four test scenes are applied to our method and we compare with different trace depths and various numbers of decomposed triangles on light source surface. Finally, we analyze and discuss our experimental results.

List of Figures

List of Figures

- iv

Chapter 1 Introduction

1. Related Work
 2.1 Global Illumination
 2.2 Light Source
 2.2.1 Light Simulation of Ray Tracing
 2.2.2 Light Simulation of Radiosity
 2.2.3 Light Simulation of Photon Mapping
 2.3 Visibility Determination
 2.3.1 Visibility Determination in the Ray Tracing Method
 2.3.2 Visibility Determination in the Radiosity Method
 2.4 Rendering Methods
 2.4.1 Rendering Equation
 2.4.2 Ray Tracing
 2.4.3 Radiosity

Chapter 2 Related Work

2.1 Global Illumination
2.2 Light Source
 2.2.1 Light Simulation of Ray Tracing
 2.2.2 Light Simulation of Radiosity
 2.2.3 Light Simulation of Photon Mapping
2.3 Visibility Determination
 2.3.1 Visibility Determination in the Ray Tracing Method
 2.3.2 Visibility Determination in the Radiosity Method
2.4 Rendering Methods
 2.4.1 Rendering Equation
 2.4.2 Ray Tracing
 2.4.3 Radiosity

Chapter 3 Our Approach

3.1 Decomposition of Light Source
3.2 Visibility Determination
3.3 Radiance Calculation
 3.3.1 Direct Illumination
 3.3.2 Indirect Illumination

Chapter 4 Experimental Results and Discussion

4.1 Experimental Environment
4.2 Test Scenes
4.3 Experimental Results
 4.3.1 The Number of Triangles on Spherical Light Source Surface
 4.3.2 Scene 1
 4.3.3 Scene 2
 4.3.4 Scene 3
 4.3.5 Scene 4
4.4 Discussion

Chapter 5 Conclusions and Future Work

56

References

<table>
<thead>
<tr>
<th>論文頁數</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>附註</td>
<td></td>
</tr>
<tr>
<td>全文點閱次數</td>
<td></td>
</tr>
<tr>
<td>資料建置時間</td>
<td>2010/12/30</td>
</tr>
<tr>
<td>轉檔日期</td>
<td>2011/01/18</td>
</tr>
</tbody>
</table>

全文存取記錄：
497516264 2011.1.17 8:39 59.112.160.94 new 01

異動記錄：